Preview

Забайкальский медицинский вестник

Расширенный поиск

ПОТЕНЦИАЛ-УПРАВЛЯЕМЫЕ НАТРИЕВЫЕ ИОННЫЕ КАНАЛЫ. АЛЬФА-СУБЪЕДИНИЦА

https://doi.org/10.52485/19986173_2021_2_105

Аннотация

Выполнен обзор литературы по натриевым каналам, рассмотрено строение и физиологические функции альфа-субъединицы потенциал-управляемых натриевых ионных каналов биологических мембран, а также классификацию потенциал-управляемых каналов для ионов натрия.

Об авторах

З. А. Покоева
Федеральное государственное бюджетное образовательное учреждение высшего образования «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации
Россия

672000, г. Чита, ул. Горького, 39а



Ю. А. Витковский
Федеральное государственное бюджетное образовательное учреждение высшего образования «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации
Россия

672000, г. Чита, ул. Горького, 39а



Список литературы

1. Wisedchaisri G., Tonggu L., McCord E., Gamal El-Din T. M., Wang L., Zheng N., Catterall W.A. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell. 2019 Aug. 8. 178(4). 993-1003.e12.

2. Hille B. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J. 1978 May; 22(2). 283–94. DOI: 10.1016/S0006-3495(78)854897

3. Catterall W. A. Voltage-Gated Sodium and Calcium Channels. In: Roberts G., Watts A., editors. Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. DOI https://doi.org/10.1007/978-3-642-35943-9.

4. Камкин А. Г., Киселева И. С. Атлас по физиологии. М. ГЭОТАР-Медиа. 2013. Россия.

5. Беркут А.А. Молекулярные основы взаимодействия компонентов яда паукообразных с потенциал-чувствительными натриевыми каналами [автореферат диссертации на соискание ученой степени кандидата биологических наук]. М.: ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова». 2019.

6. Chahine M. editor. Handbook of Experimental Pharmacology. Berlin. Springer-Verlag Berlin Heidelberg. 2018. Berlin. DOI: 10.1007/978-3-319-90284-5.

7. Ruben C.P., editor. Handbook of Experimental Pharmacology. Berlin. Springer-Verlag Berlin Heidelberg. 2014. Berlin. DOI: 10.1007/978-3-642-41588-3.

8. Goldin A.L. Resurgence of sodium channel research. Annual Review of Physiology. 2001 Mar. 63. DOI: 10.1146/annurev.physiol.63.1.871.

9. Catterall W.A., Goldin A.L., Waxman S.G. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacological Reviews. 2005 Des. 73. DOI: 10.1124/pr.57.4.4.

10. Shad K.F. Ion channels in health and sickness. In: Li T., Chen J. editors. Voltage-Gated Sodium Channels in Drug Discovery. London. Intech Open Limited. 2018. p. 14-44.

11. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug 28. 117(4). DOI: 10.1113/jphysiol.1952.sp004764

12. Ren D., Navarro B., Xu H., Yue L., Shi Q., Clapham D.E. A Prokaryotic Voltage-Gated Sodium Channel. Science. 2001 Dec 14. 294. DOI: 10.1126/science.1065635.

13. French R.J., Noskov S.Yu. Current Topics in Membranes. In: Boiteux C., Allen T.W., editors. Understanding Sodium Channel Function and Modulation Using Atomistic Simulations of Bacterial Channel Structures. Elsevier Inc. 2016. p. 145-182. DOI: 10.1016/bs.ctm.2016.07.002.

14. Bennett D.L., Clark A.J., Huang J., Waxman S.G., Dib-Hajj S.D. The role of voltage-gated sodium channels in pain signaling. Physiol Rev. 2019 Jan 23. 99. DOI: 10.1152/physrev.00052.2017.

15. Catterall W.A., Wisedchaisri, G., Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017. 13. DOI: 10.1038/nchembio.2353.

16. Kruth K.A., Grisolano T.M., Ahern C.A. Williams A.J. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells? Molecular Autism. 2020 Apr 07. 23. DOI: 10.1186/s13229-020-00330-9.

17. Физиология человека с основами патофизиологии: в 2 т. Т.1. / под ред. Шмидта Р.Ф., Ланга Ф., Хекманна М.; пер. с нем. под ред. Каменской М.А. и др. – М. : Лаборатория знаний, 2019. – 494 с.

18. Коркош В.С. Молекулярное моделирование потенциал-управляемых натриевых каналов эукариот и их взаимодействия с лигандами. [диссертация на соискание ученой степени кандидата биологических наук]. Спб.: ФГБУН «Институт эволюционной физиологии и биохимии им. И.М. Сеченова» Российской академии наук (ИЭФБ РАН). 2015.

19. Yan Z., Zhou Q., Wang L., Wu J., Zhao Y., Huang G., Peng W., Shen H., Lei J., Yan N. Structure of the Nav1.4-β1 Complex from Electric Eel. Cell. 2017 Jul 27. 170. DOI: 10.1016/j.cell.2017.06.039.

20. Yan C., Luo J. An analysis of reentrant loops. Protein J. 2010 Jul 29. 5. DOI: 10.1007/s10930-010-9259-z.

21. Tikhonov D.B., Zhorov B.C. Conservation and variability of the pore-lining helices in P-loop channels. Channels. 2017 Dec 01. 11. DOI: 10.1080/19336950.2017.1395536.

22. Cervenka R., Zarrabi T., Lukacs P., Todt H. The Outer Vestibule of the Na+ Channel–Toxin Receptor and Modulator of Permeation as Well as Gating. Mar. Drugs. 2010 Feb 3. 8. DOI: 10.3390/md8041373.

23. Tikhonov D.B., Zhorov B.C. Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies. Front. Pharmacol. 2018 Aug 07. DOI: 10.3389/fphar.2018.00880.

24. Li Y., Liu H., Xia M., Gong H. Lysine and the Na+/K+ Selectivity in Mammalian VoltageGated Sodium Channels. PLOS ONE. 2016 Sep. 1 DOI: 10.1371/journal.pone.0162413.

25. Lipkind G.M., Fozzard H.A. Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol. 2008 Jun. 131(6): p. 523-9. DOI: 10.1085/jgp.200809991

26. Пушкарёв Б.С., Витковский Ю.А. Кальциевые ионные каналы. Часть I. 2015. 4. 175-82.

27. Jiang D., Shi H., Tonggu L., Gamal El-Din T.M., Lenaeus M.J., Zhao Y., Yoshiaki C., Zheng N., Catterall W.A. Voltage-gated Na Channel Selectivity: The Role of the Conserved Domain III Lysine Residue. J Gen Physiol. 2008 Jun. 131(6): p. 523–9. DOI: 10.1085/jgp.200809991.

28. Nakajima T., Kaneko Y., Dharmawan T., Kurabayashi M. Role of the voltage sensor module in Nav domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. 2019 Aug 05. 13 (1). DOI: 10.1080/19336950.2019.1649521.

29. Groome J.R., Fujimoto E., George Jr A.L., Ruben P.C. Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states. J Physiol. 1999 May 1. 516(Pt 3). P. 687–98. DOI: 10.1111/j.1469-7793.1999.0687u.x.

30. Jiang D., Shi H., Tonggu L., Gamal El-Din T.M., Lenaeus M.J., Zhao Y., Yoshioka C., Zheng N., Catterall W.A. Structure of the Cardiac Sodium Channel. Cell. 2020 Dec 19. 180(1). P. 122- 134.e10. DOI: 10.1016/j.cell.2019.11.041.

31. Kellenberger S., Scheuer T., Catterall W.A. Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem. 1996 Nov 29. 271(48). p. 30971-9. DOI: 10.1074/jbc.271.48.30971.

32. Armstrong C.M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol.1977 Nov. 70(5). p. 567-90. DOI: 10.1085/jgp.70.5.567.

33. Wood J.N., Iseppon F. Sodium channels. Brain Neurosci Adv. 2018 Nov 13. 2. DOI: 10.1177/2398212818810684.

34. Catterall W. A., Goldin A. L., Waxman S. G. Voltage-gated sodium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE [Internet]. 2019 Sep 16 [cited 2020 Mar 24]. 4. [about 2 p.]. Available from: http://journals.ed.ac.uk/gtopdb-cite/article/view/3234.

35. Cha A., Ruben P.C., George Jr A.L., Fujimoto E., Bezanilla F. Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation. 1999 Jan. 22(1). p. 73-87. DOI: 10.1016/S0896-6273(00)80680-7.

36. Pan X., Li Z., Zhou Q., Shen H., Wu K., Huang X., Chen J., Zhang J., Zhu X., Lei J., Xiong W., Gong H., Xiao B., Yan N. Structure of the human voltage-gated sodium channel NaV1.4 in complex with beta1. Science. 2018 Oct 19. 362(6412). eaau2486. DOI: 10.1126/science.aau2486.

37. Beard J.M., Shockett P.E., O'Reilly J.P. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation. Biochim Biophys Acta Biomembr. 2019 Nov 15. 1862(2). p. 183129. DOI: 10.1016/j.bbamem.2019.183129.

38. Payandeh J. Progress in understanding slow inactivation speeds up. J Gen Physiol. 2018 Aug 16. 150(9). p. 1235-8. DOI: 10.1085/jgp.201812149


Рецензия

Для цитирования:


Покоева З.А., Витковский Ю.А. ПОТЕНЦИАЛ-УПРАВЛЯЕМЫЕ НАТРИЕВЫЕ ИОННЫЕ КАНАЛЫ. АЛЬФА-СУБЪЕДИНИЦА. Забайкальский медицинский вестник. 2021;(2):105-116. https://doi.org/10.52485/19986173_2021_2_105

For citation:


Pokoeva Z.A., Vitkovsky Yu.A. VOLTAGE-GATED SODIUM ION CHANNELS. ALPHA SUB-UNIT. Transbaikalian Medical Bulletin. 2021;(2):105-116. (In Russ.) https://doi.org/10.52485/19986173_2021_2_105

Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)