THE ROLE OF SUCCINATE IN METABOLISM REGULATION: PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL ASPECTS
https://doi.org/10.52485/19986173_2025_3_85
Abstract
The central link in the cell's energy metabolism are the substrates and enzymes of the Krebs cycle, as well as the electron transport chain of the mitochondria. Metabolites of the Krebs cycle are also present in the bloodstream and perform important functions outside the cycle. The aim of this review is to establish new concepts on the mechanisms of action of succinate in stress situations, taking into account the mechanism of substrate phosphorylation.
To study scientific achievements in the field of energy metabolism, such methods as system-structural and comparative were used. The use of the designated methods allowed us to present the author's scheme, displaying the general patterns of metabolic changes in succinate during hypoxia, inflammation and tumor growth.
Molecular mechanisms of succinate action associated with the development of pathological conditions have been identified. The features of the action of the enzyme succinate dehydrogenase are considered. It has been established that energy-dependent processes dominate in maintaining the main functional systems of the body. Potential molecular markers that reflect real value in monitoring the dynamics of the pathological process have been identified.
A conclusion is formulated about the need for further study of the role of succinate in cellular energy homeostasis for both fundamental science and clinical medicine.
About the Author
E. A. TeplyashinaRussian Federation
Teplyashina E.A., Candidate of Biological Sciences, Associate Professor of the Department of Biological Chemistry with courses in Medical, Pharmaceutical and Toxicological chemistry
1 Partizana Zheleznyaka St., Krasnoyarsk, 660022
References
1. Martı́nez-Reyes I., Chandel N. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020. 11 (1): 102. doi:10.1038/s41467-019-13668-3.
2. Arnold P.K., Finley L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem. 2023. 299 (2).102838. doi: 10.1016/j.jbc.2022.102838.
3. Liu X., Zhao G., Sun S., et al. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front. Bioeng. Biotechnol. 2022. 10. doi: https://doi.org/10.3389/fbioe.2022.843887.
4. Zhang W., Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol. 2023. 11: 1266973. doi: 10.3389/fcell.2023.1266973.
5. Ahmed A., Iaconisi G.N., Molfetta D.Di, Coppola A.C., Singh A., Bibi A., Capobianco L., Palmieri L., Dolce V., Fiermonte G. Jnt. J. Mol. Shi. 2025. 26 (1). 92. https://doi.org/10.3390/ijms26010092.
6. Atallah R., Olschewski A., Heinemann A. Succinate at the crossroad of metabolism and angiogenesis: Roles of SDH, HIF1alpha and SUCNR1. Biomedicines. 2022. 10: 3089. doi:10.3390/biomedicines10123089.
7. Shichkova P., Coggan J.S., Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells. 2024. 13 (20). 1714. https://doi.org/10.3390/cells13201714.
8. Krzak G., Willis C.M., Smith J.A., Pluchino S., Peruzzoti-Jarmetti L. Succinate receptor 1: an emerging regulator of myeloid cell function in inflammation. Trends Immunol. 2021. 42 (1). 45–58. doi: 10.1016/j.it.2020.11.004.
9. Guo Y., Cho S.W., Saxena D., Li X. Multifaceted Actions of Succinate as a Signaling Transmitter Vary with Its Cellular Locations. Endocrinol Metab. 2020. 35 (1). 36–43. doi: 10.3803/EnM.2020.35.1.36.
10. Eastin T.M., Dye J.A., Pillai P., et al. Delayed revascularization in acute ischemic stroke patients. Front. Pharmacol. 2023. 14. https://doi.org/10.3389/fphar.2023.1124263.
11. Elbekyan K.S., Markarova E.V., Unanyan L.S., et al. Succinate dehydrogenase as a new target for melatonin binding in the complex diabetes mellitus treatment. // RDN Journal of Medicine. 2022. Т. 26. № 3. С. 221–231. doi:10.22363/2313-0245-2022-26-3-221-231. In Russian.
12. Shodiev D.R., Zvyagina V.I., Ryabova M.N., Marsyanova Yu.A. Succinate-receptor system of bone and cartilage tissue in patients with metabolic phenotype of osteoarthritis. Problems of biological, medical and pharmaceutical chemistry. 2024. 27 (4). 42−49. https://doi.org10.29296/25877313-2024-04-06. In Russian.
13. Cao K., Xu J., Cao W., et al. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med. 2023. 207. 247–259. doi: 10.1016/j.freeradbiomed.2023.07.023.
14. Esteban-Amo M.J., Jimenez-Cuadrado P., Serrano-Lorenzo P. Succinate Dehydrogenase and Human Disease: Novel Insights into a Well-Known Enzyme. Biomedicines. 2024. 12 (9). 2050. doi: 10.3390/biomedicines12092050.
15. Wang Q., Li M., Zhou Y., Zhou Y., Yan J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease. Exp Biol Med. 2023. 248 (3). 263–270. doi: 10.1177/15353702221147567.
16. Moosavi B., Berry E.A., Zhu X.L., Yang W.-C., Yang G.-Fu The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell Mol Life Sci. 2019. 76 (20). 4023–4042. doi: 10.1007/s00018-019-03200-7.
17. Benit P., Goncalves J., Knoury R.El., et al. Succinate Dehydrogenase, Succinate, and Superoxides: A Genetic, Epigenetic, Metabolic, Environmental Explosive Crossroad. Biomedicine. 2022. 10 (8). 1788. doi.org/10.3390/biomedicines10081788.
18. Hou X., Chen Y., Li X., et al. Protein succinylation: regulating metabolism and beyond. Front Nutr. 2024. 11. 1336057. doi: 10.3389/fnut.2024.1336057.
19. Mu R., Ma Z., Lu C., et al. Role of succinylation modification in thyroid cancer and breast cancer. Am J Cancer Res. 2021. 11 (10):4683–4699.
20. Yang Y., Tapias V., Acosta D., Xu H., Chen H., Bhawal R. Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nat Commun. 2022. 13: 159. doi: 10.1038/s41467-021-27572-2.
21. Huang L.Y., Ma J.-Y., Song J.-X., et al. Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion. Neural Regen Res. 2022. 18 (5). 1040–1045. doi: 10.4103/1673-5374.355821.
22. Zhang J., Han Zi-Q., Wang Y., He Q.-Yu Alteration of mitochondrial protein succinylation against cellular oxidative stress in cancer. Mil Med Res. 2022. 9: 6. doi: 10.1186/s40779-022-00367-2.
23. Wu Q.J., Zhang T.N., Chen H.H., et al. The sirtuin family in health and disease. Curr. Opin. Chem. Biol. 2019. 51. 18–29. doi:10.1016/j.cbpa.2019.01.023.
24. Yang Y., Tapias V., Acosta D., et al. Altered succinylation of mitochondrial proteins, APP and tau in Alzheimer's disease. Nat. Commun. 2022. 13. 159. doi: 10.1038/s41467-021-27572-2.
25. Kosciuk T., Wang M., Hong J.Y., Lin H. Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 2019. 5. 18–29. doi:10.1016/j.cbpa.2019.01.023.
26. Chen C., Zhou M., Ge Y., Wang X. SIRT1 and aging related signaling pathways. Mech. Ageing Dev. 2020. 187. doi: 10.1016/j.mad.2020.11.
27. Pande S., Raisuddin S. Molecular and cellular regulatory roles of sirtuin protein. Signal Transduct. Target. Ther. 2022. 7. 402. doi: 10.1038/s41392-022-01257-8.
28. Yang L., Ma X., He Y., et al. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Sci. China Life Sci. 2017. 60 (3). 249–256. doi:10.1007/s11427-016-0060-7.
29. Ke Z., Shen K., Wang Li, et al. Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development. Front. Immunol. 2025. 16. doi.org/10.3389/fimmu.2025.1531246.
30. Marquez J., Flores J., Kim, et al. Rescue of TCA Cycle Dysfunction for Cancer Therapy. J Clin Med. 2019. 8 (12). 2161. doi: 10.3390/jcm8122161.
31. Chen P.-S., Chiu W.-T., Hsu P.-L., et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020. 27: 63: doi: 10.1186/s12929-020-00658-7.
32. Laird M., Ku J.C., Raiten J., et al. Mitochondrial metabolism regulation and epigenetics in hypoxia. Frontiers in Physiology. 2024. 15. https://doi.org/10.3389/fphys.2024.1393232.
33. Zong Y., Liao P., Chen L., et al. Mitochondrial dysfunction: mechanism and advances in therapy. Signal Transduction and targeted therapy. 2024. 9. 124. https://doi.org/10.1038/s41392-024-01839-8.
34. Huang H., Li G., He Y., et al. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front. Immunol. 2024. 15. 1–13. doi: 10.3389/fimmu.2024.1404441.
35. Dambrova M., Zuurbier C. J., Borutaite V., Liepinsh E., Makrecka-Kuka M. 2021. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic. Biol. Med. 2021. 165. 24–37. 10.1016/j.freeradbiomed.2021.01.036.
36. Eniafe J., Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene. 2021. 40(19). 3351–3363. doi: 10.1038/s41388-020-01639-8.
37. Kim H.-J., Kim H., Lee J.-H., Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun. Ageing. 2023. 20 (67). doi: 10.1186/s12979-023-00383-3.
38. Huang X., Zhao L., Peng R. Hypoxia-inducible factor 1 and mitochondria: an intimate connection. Biomolecules. 13 (1). 50. doi:10.3390/biom13010050.
Supplementary files
Review
For citations:
Teplyashina E.A. THE ROLE OF SUCCINATE IN METABOLISM REGULATION: PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL ASPECTS. Transbaikalian Medical Bulletin. 2025;(3):85-95. (In Russ.) https://doi.org/10.52485/19986173_2025_3_85

        








