SERUM LEVEL OF SOLUBLE MOLECULES OF IMMUNE RESPONSE CHECKPOINTS IN PATIENTS WITH VARIOUS FORMS OF AUTOIMMUNE THYROIDITIS
https://doi.org/10.52485/19986173_2025_3_3
Abstract
Introduction: The prevalence of chronic autoimmune thyroiditis (AIT) is more than 5% of the world's population. Despite this, the tactics and methods of treating AIT have not undergone innovations in terms of therapy for many years, while the modern trend in the treatment of other autopathologies is to use monoclonal antibodies. However, it was noted that with the use of some immune checkpoint inhibitors for the treatment of oncopathology, various autoimmune diseases debuted in patients. This fact opens up the prospect of studying new links in the pathogenesis of AIT.
Aim: determination of the level of sCD25, s4-1BB, sTim-3, sLAG-3, sGalectin-9 molecules in individuals suffering from various forms of AIT.
Material and methods: The study involved 31 subjects aged 18 to 40 years, divided into four groups: I Healthy (n = 10); II Carriers of antibodies to thyroid peroxidase (ATkTPO) (n = 11); III Subclinical form of hypothyroidism AIT (n = 6); IV AIT with hypothyroidism, medically compensated (n = 4). Venous blood was collected to determine the ATkTPO level by ELISA, the concentration of thyroid-stimulating hormone and free thyroxine by immunochemiluminescence, the level of CD25, 4-1BB, Tim-3, LAG-3, Galectin-9 by flow cytofluorimetry. Statistical processing was performed using the Kruskal-Wallis one-way analysis of variance. Results: The sCD25 level decreased by almost 85% (P = 0,001) from the control 19,2 pg/ml (2,20; 29,9) in groups: II 2.83 pg/ml (2,24; 3,17), III 3,23 pg/ml (2,69; 45,8), and IV 3,05 pg/ml (2,31; 7,37). The concentration of 4-1BB increased threefold (P = 0,001) in groups: II 35,0 pg/ml (15,5; 39,8), III 31,9 (27,8; 44,4) from the control 11,8 pg/ml (4,96; 14,0). sTim-3 decreased by more than 98% (P = 0,001) from group I 280 pg/ml (13,7; 321) when compared with groups: II 5,22 pg/ml (2,13; 6,34), III 4,10 pg/ml (3,36; 5,34), IV 1,26 pg/ml (0,362; 2,45). The content of LAG-3 decreased by 66% (P = 0,001) when comparing group, I 51,1 pg/ml (20,1; 60,1) with II 20,1 pg/ml (2,23; 41,6). The concentration of Galectin-9 in group II 277 pg/ml (196; 378) is 5 times lower than in I 1377 pg/ml (1140; 1910) (P = 0,001).
Conclusion: With the development of AIT, the concentration of CD25, Tim-3, LAG-3, Galectin-9 decreases, and the level of 4-1BB increases.
Keywords
About the Authors
V. V. BabinskyRussian Federation
Babinsky V.V., full-time postgraduate student of the Department of Pathological Physiology
39a Gorky St., Chita, 672000
N. O. Grin
Russian Federation
Grin N.О., Assistant of the Department of Hospital Therapy and Endocrinology
39a Gorky St., Chita, 672000
P. P. Tereshkov
Russian Federation
Tereshkov P.P., Сandidate of Medical Sciences, Head of the Laboratory of Experimental and Clinical, Biochemestry and Immunology at the Research Institute of Molecular Biology
39a Gorky St., Chita, 672000
E. V. Fefelova
Fefelova E.V., Doctor of Medical Sciences, Professor, Associate Professor of the Department of Pathophysiology
39a Gorky St., Chita, 672000
N. N. Tsybikov
Russian Federation
Tsybikov N.N, Doctor of Medical Sciences, Professor, Head of the Department of Pathophysiology
39a Gorky St., Chita, Russia, 672000
References
1. Conrad N., Misra S., Verbakel J.Y., et al. Cambridge G. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet. 2023 Jun 3; 401 (10391): 1878–1890. doi: 10.1016/S 0140-6736(23)00457-9.
2. Stroev Yu.I., Agafonov P.V., Korovin A.E., et al.. Medical geography and ecology of hashimoto's autoimmune thyroiditis and related diseases. Russian Biomedical Research. 2022. №2. , doi: 10.56871/2889.2022.10.83.006. in Russian.
3. Weetman A.P. An update on the pathogenesis of Hashimoto's thyroiditis. J Endocrinol Invest. 2021 May; 44 (5): 883–890. doi: 10.1007/s40618-020-01477-1.
4. Dedov I.I., Melnichenko G.A., Fadeev V.V., Morgunova T.B., Clinical guidelines of the Russian Association of Endocrinologists. «Hypothyroidism.» 2024. in Russian.
5. Klimak M., Nims R.J., Pferdehirt L., et al. Immunoengineering the next generation of arthritis therapies. Acta Biomater. 2021 Oct 1; 133: 74–86. doi: 10.1016/j.actbio.2021.03.062. Epub 2021 Apr 3. PMID: 33823324; PMCID: PMC8941669.
6. Dhodapkar K.M., Duffy A., Dhodapkar M.V. Role of B cells in immune-related adverse events following checkpoint blockade. Immunol Rev. 2023 Sep; 318 (1): 89–95. doi: 10.1111/imr.13238. Epub 2023 Jul 8. PMID: 37421187; PMCID: PMC10530150.
7. Babinsky V.V. Changes in the level of immune checkpoints in patientswith various forms of autoimmune thyroiditis Acta Biomedica Scientifica. 2024; 9 (4): 6974. https://doi.org/10.29413/ABS.2024-9.4.8. in Russian.
8. Siemiątkowska A., Bryl M., Kosicka-Noworzyń K., Tvrdoň J., Gołda-Gocka I., Barinow-Wojewódzki A., Główka F.K. Serum sCD25 Protein as a Predictor of Lack of Long-Term Benefits from Immunotherapy in Non-Small Cell Lung Cancer: A Pilot Study. Cancers (Basel). 2021 Jul 23; 13 (15): 3702. doi: 10.3390/cancers13153702. PMID: 34359602; PMCID: PMC8345204.
9. Tay C., Tanaka A., Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 2023 Mar 13; 41 (3): 450–465. doi: 10.1016/j.ccell.2023.02.014. PMID: 36917950.
10. Damoiseaux J. The IL-2 – IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. Clin Immunol. 2020 Sep; 218: 108–515. doi: 10.1016/j.clim.2020.108515. Epub 2020 Jul 1. PMID: 32619646.
11. Luu K., Shao Z., Schwarz H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J Leukoc Biol. 2020 May; 107 (5): 731–738. doi: 10.1002/JLB.2MR1119-224R. Epub 2020 Feb 13. PMID: 32052477.
12. Liu Y., Chen H., Chen Z., et al. Novel Roles of the Tim Family in Immune Regulation and Autoimmune Diseases. Front Immunol. 2021 Sep 17; 12: 748–787. doi: 10.3389/fimmu.2021.748787. PMID: 34603337; PMCID: PMC8484753.
13. Leal-Pinto E., Tao W., Rappaport J., Richardson M., Knorr B.A., Abramson R.G. Molecular cloning and functional reconstitution of a urate transporter/channel. J Biol Chem. 1997 Jan 3; 272 (1): 617–25. doi: 10.1074/jbc.272.1.617. PMID: 8995305.
14. Moar P., Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol. 2021 Mar; 361: 104–287. doi: 10.1016/j.cellimm.2021.104287. Epub 2021 Jan 14. PMID: 33494007.
15. Wang W., Sung N., Gilman-Sachs A., Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol. 2020 Aug. 18; 11: 2025. doi: 10.3389/fimmu.2020.02025. PMID: 32973809; PMCID: PMC7461801.
16. Yang K., Wu Z., Zhang H., et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022 Feb 8; 21 (1): 39. doi: 10.1186/s12943-022-01513-z. PMID: 35135556; PMCID: PMC8822752.
17. Cai L., Li Y., Tan J., Xu L., Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol. 2023 Sep 5; 16 (1): 101. doi: 10.1186/s13045-023-01499-1. Erratum in: J Hematol Oncol. 2023 Sep. 29; 16 (1): 105. doi: 10.1186/s13045-023-01503-8. PMID: 37670328; PMCID: PMC10478462.
18. Kraehenbuehl L., Weng C.H., Eghbali S., Wolchok J.D., Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022 Jan; 19 (1): 37–50. doi: 10.1038/s41571-021-00552-7. Epub 2021 Sep. 27. PMID: 34580473.
19. He X., Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 Aug; 30 (8): 660–669. doi: 10.1038/s41422-020-0343-4. Epub 2020 May 28. PMID: 32467592; PMCID: PMC7395714.
20. Huo J.L., Wang Y.T., Fu W.J., Lu N., Liu Z.S. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022 Jul 26; 13: 956090. doi: 10.3389/fimmu.2022.956090. PMID: 35958563; PMCID: PMC9361790.
Review
For citations:
Babinsky V.V., Grin N.O., Tereshkov P.P., Fefelova E.V., Tsybikov N.N. SERUM LEVEL OF SOLUBLE MOLECULES OF IMMUNE RESPONSE CHECKPOINTS IN PATIENTS WITH VARIOUS FORMS OF AUTOIMMUNE THYROIDITIS. Transbaikalian Medical Bulletin. 2025;(3):3-12. (In Russ.) https://doi.org/10.52485/19986173_2025_3_3










