Preview

Transbaikalian Medical Bulletin

Advanced search

Clinical pattern of valproate-induced metabolic syndrome

https://doi.org/10.52485/19986173_2023_3_89

Abstract

Aim. Update the level of knowledge of neurologists and therapists about the features of the clinical pattern of metabolic syndrome (MS) caused by taking valproic acid (VPA).
Materials and methods. The review was conducted on the databases PubMed, Web of Science, Springer, Google Scholar and e-Library.
Results. The risk of developing VPA-induced MS depends on the dose and duration of taking VPA, as well as on genetic predisposition. This ADR significantly worsens the quality of life of patients who receive VPA for a long time. In addition to weight gain and insulin resistance, VPA-induced MS is accompanied by dyslipidemia, arterial hypertension and type 2 diabetes mellitus. Changes in the metabolome in patients receiving VPA for a long time include a set of changes in the level of metabolic biomarkers in biological fluids and various organs and tissues of the body, including peptides, lipids, amino acids, nucleic acids, carbohydrates, biogenic amines, vitamins and minerals. Such changes in the metabolome can not only significantly affect the phenotype of the disease, but also the expected therapeutic response to VPA and significantly affect posttranslational processes, including secondary transcriptome and proteome changes in patients with neurological diseases and mental disorders.
Conclusion. The problem of VPA-induced MS is an important interdisciplinary problem of neurology and therapy, requiring a personalized approach to prognosis and early diagnosis in order to increase the safety of psychopharmacotherapy and improve the quality of life of patients with neurological diseases and mental disorders.

About the Authors

N. A. Shnayder
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; V.F. Voino-Yasenetsky State Medical University
Russian Federation

3 Bekhtereva St., St. Petersburg, 192019

1 Partizan Zheleznyk Str., Krasnoyarsk, 660022



V. V. Grechkina
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

3 Bekhtereva St., St. Petersburg, 192019



M. M. Petrova
V.F. Voino-Yasenetsky State Medical University
Russian Federation

1 Partizan Zheleznyk Str., Krasnoyarsk, 660022



R. F. Nasyrova
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

3 Bekhtereva St., St. Petersburg, 192019



References

1. https://base.garant.ru/71947662

2. Shnaider N.A., Dmitrenko D.V. Chronic valproic acid intoxication in epileptology: diagnosis and treatment. Neurology, Neuropsychiatry, Psychosomatics. 2016. 8(2). 94-99. in Russian. DOI 10.14412/2074-2711-2016-2-94-99.

3. Kazamel M., Stino A.M., Smith A.G. Metabolic syndrome and peripheral neuropathy. Muscle Nerve. 2021. 63(3). 285-293. DOI 10.1002/mus.27086.

4. Kim Y.J., Lee Y.H., Lee Y.J., Kim K.J., Kim S.G. Weight Gain Predicts Metabolic Syndrome among North Korean Refugees in South Korea. Int. J. Environ. Res. Public Health. 2021. 18. 8479. DOI 10.3390/ijerph18168479.

5. International Diabetes Federation. IDF Diabetes Atlas. 10th edn. Brussels, Belgium: International Diabetes Federation. 2021. https://idf.org/.

6. Kassi E., Pervanidou P., Kaltsas G., Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011. 9. 48. DOI 10.1186/1741-7015-9-48.

7. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001. 285 (19). 2486–2497. DOI 10.1001/jama.285.19.2486.

8. Penninx B.W.J.H., Lange S.M.M. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin Neurosci. 2018. 20(1). 63-73. DOI 10.31887/DCNS.2018.20.1/bpenninx.

9. Suplotova L.A., Smetanina S.A., Novakovskaya N.A. Prevalence of metabolic syndrome and its components in women in different ethnic groups. Obesity and metabolism. 2011. 8(2). 48-51. DOI 10.14341/2071-8713-4952. in Russian.

10. Borisov I.V., Bondar V.A., Petrova M.V., Kuzovlev A.N., Ohlopkov V.A., Kanarski M.M., Nekrasova J.J. Metabolic syndrome: definition, pathogenesis and rehabilitation. Bulletin of the All-Russian Society of Specialists in Medical and Social Expertise, Rehabilitation and Rehabilitation Industry. 2020. 114-125. DOI 10.17238/issn1999-2351.2020.4.10114-125. in Russian.

11. Chen D.C., Du X.D., Yin G.Z., Yang K.B., Nie Y., Wang N., Li Y.L., Xiu M.H., He S.C., Yang F.D., Cho R.Y., Kosten T.R., Soares J.C., Zhao J.P., Zhang X.Y. Impaired glucose tolerance in first-episode drug-naïve patients with schizophrenia: relationships with clinical phenotypes and cognitive deficits. Psychol Med. 2016. 46(15). 3219-3230. DOI 10.1017/S0033291716001902.

12. Wofford M.R., King D.S., Harrell T.K. Drug-induced metabolic syndrome. J Clin Hypertens (Greenwich). 2006. 8(2). 114-9. DOI 10.1111/j.1524-6175.2006.04751.x.

13. Sychev D.A., Ostroumova O.D., Pereverzev A.P., Kochetkov A.I., Ostroumova T.M., Klepikova M.V., Alyautdinova I.A., Goloborodova I.V. Drug-induced diseases: approaches to diagnosis, correction and prevention Pharmacovigilance. Pharmateka. 2020. 113-126. DOI 10.18565/pharmateca.2020.6.113-126. in Russian.

14. Khasanova A.K., Dobrodeeva V.S., Shnayder N.A., Petrova M.M., Pronina E.A., Bochanova E.N., Lareva N.V., Garganeeva N.P., Smirnova D.A., Nasyrova R.F. Blood and Urinary Biomarkers of Antipsychotic-Induced Metabolic Syndrome. Metabolites. 2022. 12. 726. DOI 10.3390/metabo12080726.

15. Shnayder N.A., Grechkina V.V., Khasanova A.K., Bochanova E.N., Dontceva E.A., Petrova M.M., Asadullin A.R., Shipulin G.A., Altynbekov K.S., Al-Zamil M., Nasyrova R.F. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites. 2023. 13(1). 134. DOI 10.3390/metabo13010134.

16. George L.J., Singh P., Aneja S., Singh R., Solanki R.S., Seth A. Insulin Resistance in children on Sodium Valproate - A hospital based cross-sectional study in Indian children. Trop Doct. 2023. 53(1). 91-96. DOI 10.1177/00494755221134141.

17. Zuo S., Fries B.E., Szafara K., Regal R. Valproic Acid as a potentiator of metabolic syndrome in institutionalized residents on concomitant antipsychotics: fat chance, or slim to none? P T. 2015. 40(2). 126-32.

18. Verrotti A., D'Egidio C., Mohn A., Coppola G., Chiarelli F. Weight gain following treatment with valproic acid: pathogenetic mechanisms and clinical implications. Obes Rev. 2011 May. 12(5). e32-43. DOI 10.1111/j.1467-789X.2010.00800.x.

19. Belcastro V., D'Egidio C., Striano P., Verrotti A. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res. 2013. 107(1-2), 1-8. DOI 10.1016/j.eplepsyres.2013.08.016.

20. Romoli M., Mazzocchetti P., D'Alonzo R., Siliquini S., Rinaldi V.E., Verrotti A., Calabresi P., Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol. 2019. 17(10). 926-946. DOI 10.2174/1570159X17666181227165722.

21. Zhang H., Lu P., Tang H.L., Yan H.J., Jiang W., Shi H., Chen S.Y., Gao M.M., Zeng X.D., Long Y.S. Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain. Cell Mol Neurobiol. 2021. 41(6). 1257-1269. DOI 10.1007/s10571-020-00895-2.

22. Rehman T., Sachan D., Chitkara A. Serum Insulin and Leptin Levels in Children with Epilepsy on Valproate-associated Obesity. J Pediatr Neurosci. 2017. 12(2). 135-137. DOI 10.4103/jpn.JPN_152_16.

23. Münzberg H., Björnholm M., Bates S.H., Myers M.G. Jr. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005. 62(6). 642-52. DOI 10.1007/s00018-004-4432-1.

24. Rauchenzauner M., Laimer M., Luef G., et al. Adiponectin receptor R1 is upregulated by valproic acid but not by topiramate in human hepatoma cell line, HepG2. Seizure. 2008. 17(8). 723-6. DOI 10.1016/j.seizure.2008.03.002.

25. Qiao L., Schaack J., Shao J. Suppression of adiponectin gene expression by histone deacetylase inhibitor valproic acid. Endocrinology. 2006. 147(2). 865-74. DOI 10.1210/en.2005-1030.

26. Brown A.E., Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr Cardiol Rep. 2016. 18(8). 75. DOI 10.1007/s11886-016-0755-4.

27. Petersen M.C., Shulman G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018. 98(4). 2133-2223. DOI 10.1152/physrev.00063.2017.

28. Aly R.H., Amr N.H., Saad W.E., Megahed A.A. Insulin resistance in patients on valproic acid: relation to adiponectin. Acta Neurol Scand. 2015. 131(3). 169-75. DOI 10.1111/ane.12313.

29. Jian J., Li L.G., Zhao P.J., Zheng R.J., Dong X.W., Zhao Y.H., Yin B.Q., Cheng H., Li H.L., Li E.Y. TCHis mitigate oxidative stress and improve abnormal behavior in a prenatal valproic acid-exposed rat model of autism. Physiol Genomics. 2022. 54(9). 325-336. DOI 10.1152/physiolgenomics.00104.2021.

30. Brown R., Imran S.A., Ur E., Wilkinson M. Valproic acid and CEBPalpha-mediated regulation of adipokine gene expression in hypothalamic neurons and 3T3-L1 adipocytes. Neuroendocrinology. 2008. 88(1). 25-34. DOI 10.1159/000113927.

31. Khan S., Kumar S., Jena G. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie. 2016. 125. 42-52. DOI 10.1016/j.biochi.2016.02.014.

32. Rauchenzauner M., Laimer M., Wiedmann M., et al. The novel insulin resistance parameters RBP4 and GLP-1 in patients treated with valproic acid: just a sidestep? Epilepsy Res. 2013. 104(3). 285-8. DOI 10.1016/j.eplepsyres.2012.10.004.

33. Hindricks G., Potpara T., Dagres N., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Russian Journal of Cardiology. 2021. 26(9). 4701. DOI 10.15829/1560-4071-2021-4701. in Russian.

34. Aune D., Huang W., Nie J., Wang Y. Hypertension and the Risk of All-Cause and Cause-Specific Mortality: An Outcome-Wide Association Study of 67 Causes of Death in the National Health Interview Survey. Biomed Res Int. 2021. 2021. 9376134. DOI 10.1155/2021/9376134.

35. Abaseynejad F., Akrami R., Mohebbati R., Sehab Negah S., Mohammad-Zadeh M. The Effect of Sodium Valproate on Cardiovascular Responses in Pentylene-tetrazol Kindling Model of Epilepsy. Biomed J Sci & Tech Res. 2022. DOI 10.26717/BJSTR.2022.42.006746.

36. Sousa-Lopes A., de Freitas R.A., Carneiro F.S., Nunes K.P., Allahdadi K.J., Webb R.C., Tostes R.C., Giachini F.R., Lima V.V. Angiotensin (1-7) Inhibits Ang II-mediated ERK1/2 Activation by Stimulating MKP-1 Activation in Vascular Smooth Muscle Cells. Int J Mol Cell Med. 2020. 9(1). 50-61. DOI 10.22088/IJMCM.BUMS.9.1.50.

37. Zhao Y., Xing B., Dang Y.H., Qu C.L., Zhu F., Yan C.X. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS One. 2013. 8(1). e52698. DOI 10.1371/journal.pone.0052698.

38. Thiyagarajan Rajeshwari, Boobalan Raja, Jeganathan Manivannan, Thangarasu Silambarasan. Valproic acid attenuates blood pressure, vascular remodeling and modulates ET-1 expression in L-NAME induced hypertensive rats. Biomedicine & Preventive Nutrition. 2014. 195-202. DOI 10.1016/j.bionut.2013.09.002.

39. Sivananthan M., Mohiuddin S. Valproate Induced Hypertensive Urgency. Case Rep Psychiatry. 2016. 1458548. DOI 10.1155/2016/1458548.

40. Zárate A., Manuel-Apolinar L., Saucedo R., Hernández-Valencia M., Basurto L. Hypercholesterolemia As a Risk Factor for Cardiovascular Disease: Current Controversial Therapeutic Management. Arch Med Res. 2016. 47(7). 491-495. DOI 10.1016/j.arcmed.2016.11.009.

41. Peters S.A., Singhateh Y., Mackay D., Huxley R.R., Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis. 2016. 248. 123-31. DOI 10.1016/j.atherosclerosis.2016.03.016.

42. Kusumastuti K., Jaeri S. The effect of long-term valproic acid treatment in the level of total cholesterol among adult. Indian J Pharmacol. 2020. 52(2). 134.137. DOI 10.4103/ijp.IJP_655_18.

43. Hamed S.A. Atherosclerosis in epilepsy: its causes and implications. Epilepsy Behav. 2014. 41.290-6. DOI 10.1016/j.yebeh.2014.07.003.

44. Aziz R.S., Saeed U., Ali L., Arshad M., Abbas R., Mushtaq S., Asif SHAHZAD A., Shaukat A. Effect on lipid profile due to prolong Valproic acid intake. Pakistan Journal of Medical & Health Sciences. 2021. DOI 10.53350/pjmhs211571497.

45. Guo H.L., Jing X., Sun J.Y., et al. Valproic Acid and the Liver Injury in Patients with Epilepsy: An Update. Curr Pharm Des. 2019. 25(3). 343-351. DOI 10.2174/1381612825666190329145428.

46. Verrotti A., Scardapane A., Franzoni E., Manco R., Chiarelli F. Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res. 2008. 78(2-3). 171-7. DOI 10.1016/j.eplepsyres.2007.11.005.

47. Verrotti A., la Torre R., Trotta D., Mohn A., Chiarelli F. Valproate-induced insulin resistance and obesity in children. Horm Res. 2009. 71(3). 125-31. DOI 10.1159/000197868.

48. Fathallah N., Slim R., Larif S., Hmouda H., Ben Salem C. Drug-Induced Hyperglycaemia and Diabetes. Drug Saf. 2015. 38(12). 1153-68. DOI 10.1007/s40264-015-0339-z.

49. Felisbino M.B., Ziemann M., Khurana I., Okabe J., Al-Hasani, K., Maxwell, S., Harikrishnan K.N., de Oliveira C.B.M., Mello, M.L.S., El-Osta A. Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep. 2021. 11(1). 2163. DOI 10.1038/s41598-021-81794-4.

50. Mansoub S., Chan M.K., Adeli K. Gap analysis of pediatric reference intervals for risk biomarkers of cardiovascular disease and the metabolic syndrome. Clin Biochem. 2006. 39(6). 569-87. DOI 10.1016/j.clinbiochem.2006.02.013.

51. Rezzani R., Franco C. Liver, Oxidative Stress and Metabolic Syndromes. Nutrients. 2021. 13(2). 301. DOI 10.3390/nu13020301.

52. Lai W., Du D., Chen L. Metabolomics Provides Novel Insights into Epilepsy Diagnosis and Treatment: A Review. Neurochem Res. 2022. 47(4). 844-859. DOI 10.1007/s11064-021-03510-y.

53. Rafaqat S., Sharif S., Majeed M., Naz S., Manzoor F., Rafaqat S. Biomarkers of Metabolic Syndrome: Role in Pathogenesis and Pathophysiology Of Atrial Fibrillation. J Atr Fibrillation. 2021. 14(2). 20200495. DOI 10.4022/jafib.20200495.

54. Shnayder N.A., Grechkina V.V., Trefilova V.V., Efremov I.S., Dontceva E.A., Narodova E.A., Petrova M.M., Soloveva I.A., Tepnadze L.E., Reznichenko P.A., Al-Zamil M., Altynbekova G.I., Strelnik A.I., Nasyrova R.F. Valproate-Induced Metabolic Syndrome. Biomedicines. 2023. 11(5). 1499. DOI 10.3390/biomedicines11051499.


Review

For citations:


Shnayder N.A., Grechkina V.V., Petrova M.M., Nasyrova R.F. Clinical pattern of valproate-induced metabolic syndrome. Transbaikalian Medical Bulletin. 2023;(3):89-105. (In Russ.) https://doi.org/10.52485/19986173_2023_3_89

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)