Preview

Transbaikalian Medical Bulletin

Advanced search

VOLTAGE-GATED POTASSIUM CHANNELS KV7.1 (KCNQ1): PHYSIOLOGICAL SIGNIFICANCE AND ASSOCIATED PATHOLOGY

https://doi.org/10.52485/19986173_2022_2_91

Abstract

This review provides information on the history of discovery, structure, and principles of functioning of the voltage-gated potassium ion channel Kv7.1 (KCNQ1). Current data on the physiological role of Kv7.1 in various organs and tissues are presented. The main pathological conditions associated with mutations in the gene encoding Kv7.1 are described.

About the Authors

D. P. Ivanov
Chita Regional Hospital
Russian Federation

7 Kokhanskogo str., Chita, 672038



A. P. Fyodorova
Chita State Medical Academy
Russian Federation

39a Gorky str., Chita, 672000



O. V. Serebryakova
Chita State Medical Academy
Russian Federation

39a Gorky str., Chita, 672000



References

1. Krutetskaya Z. I., Nozdrachev A. D. The ion theory of the nerve impulse. Herald of St. Petersburg University. series 3: Biology. 1. 146-153. in Russian.

2. Mel'nikov K.N., Vislobokov A.I., Kolpakova M.E., Borisova V.A., Ignatov Yu.D. Potassium of ionic channels of cellular membranes. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2009. 1. 3-27. in Russian.

3. Mironov N.Yu., Golitsyn S.P. Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications. Kardiologiya. 2013. 11. 66-73. in Russian.

4. Kuzmin V.S., Rosenshtraukh L.V. Ionic mechanisms of action of class III antiarrhythmic drugs. Kardiologiya, 2010. Т. 7. 49-61. in Russian.

5. Zefirov A.L., Sitdikova G.F. Ion channels of excitable cell (structure, function, pathology). Kazan'. 2010. 270. in Russian.

6. Grizel' A.V. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae. 2014. 4 (23). 12-28. in Russian.

7. Long S.B., Campbell E.B., MacKinnon R., Crystal Structure of a Mammalian Voltage- Dependent Shaker Family K+ Channel. Science. 2005. 5736. 897–903.

8. Wang Y., Eldstrom J., Fedida D. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes. Front Physiol. 2020. 11. 504. DOI:10.3389/fphys.2020.00504.

9. Wang Q., Curran M.E., Splawski I., Burn T.C., Millholland J.M., VanRaay T.J., Shen J., Timothy K.W., Vincent G.M., de Jager T., Schwartz P.J., Towbin J.A., Moss A.J., Atkinson D.L., Landes G.M., Connors T.D., Keating M.T. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 1996. 12. 17-23.

10. Neyroud, N., Richard, P., Vignier, N., Donger, C., Denjoy, I., Demay, L., Shkolnikova, M., Pesce, R., Chevalier, P., Hainque, B., Coumel, P., Schwartz, K., Guicheney, P. Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome. Circ. Res. 1999. 84. 290-297.

11. Jespersen T., Grunnet M., Olesen S.P. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda). 2005. 20. DOI: 10.1152/physiol.00031.2005.

12. Sara I. L., Rene B.-S., Larsson H.P. The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility. J Physiol. 2015. 593(12). 2605-2615. DOI: 10.1113/jphysiol.2014.287607.

13. Cui J. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels. Biophys J. 2016. 110(1). 14-25.

14. Hayashi M., Wang J., Hede S. E., Novak I. An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am. J. Physiol. Cell Physiol. 2012. 303(2). 151-159. 10.1152/ajpcell.00089.2012.

15. Warth R., Garcia Alzamora M., Kim J.K., Zdebik A., Nitschke R., Bleich M., Gerlach U., Barhanin J., Kim S.J. The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pflugers Arch. 2002. 443(5-6). 822-828. DOI:10.1007/s00424-001-0751-3.

16. Ullrich S., Su J., Ranta F., Wittekindt O.H., Ris F., Rösler M., Gerlach U., Heitzmann D., Warth R., Lang F.. Effects of IKs channel inhibitors in insulin-secreting INS-1 cells. Pflügers Arch. 2005. 451. 428-436.

17. Neyroud N., Tesson F., Denjoy I., Leibovici M., Donger C., Barhanin J., Faure S., Gary F., Coumel P., Petit C., Schwartz K., Guicheney P. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. 1997. Nat Genet 15. 186-189.

18. Wangemann P., Liu J., Marcus D.C. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res. 1995. 84. 19-29.

19. Schulze-Bahr E., Wang Q., Wedekind H., Haverkamp W., Chen Q., Sun Y., Rubie C., Hordt M., Towbin J.A., Borggrefe M., Assmann G., Qu X., Somberg J.C., Breithardt G., Oberti C., Funke H. KCNE1 mutations cause Jervell and Lange- Nielsen syndrome. Nat Genet. 1997. 17. 267-268.

20. Vallon V., Grahammer F., Richter K., Bleich M., Lang F., Barhanin J., Volkl H., Warth R. Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol. 2003. 12. 2003-2011.

21. Casimiro M.C., Knollmann B.C., Ebert S.N., Vary J.C. Jr, Greene A.E., Franz M.R., Grinberg A., Huang S.P., Pfeifer K. Targeted disruption of the KCNQ1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci USA. 2001. 98. 2526-2531.

22. Hasegawa K., Ohno S., Ashihara T., Itoh H., Ding W.-G., Toyoda F., Makiyama T., Aoki H., Nakamura Y., Delisle B. P., Matsuura H., Horie M. A novel KCNQ1 missense mutation identified in a patient with juvenile-onset atrial fibrillation causes constitutively open I(Ks) channels. Heart Rhythm. 2014. 11. 67-75.

23. Polyak M.E., Ivanova E.A., Polyakov A.V., Zaklyazminskaya E.V. Mutation spectrum of the gene KCNQ1 in Russian patients with long QT syndrome. Russian Journal of Cardiology. 2016. 10. 15-20. https://DOI:.org/10.15829/1560-4071-2016-10-15-20. In Russian.

24. Tyson J., Tranebjaerg L., McEntagart M., Larsen L. A., Christiansen M., Whiteford M. L., Bathen J., Aslaksen B., Sorland S. J., Lund O., Pembrey M. E., Malcolm S., Bitner-Glindzicz M. Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen. Hum. Genet. 2000. 107. 499-503.

25. Bockeria L.A., Pronicheva I.V. Contemporary status of genetic rationale for arrhythmias. Annaly aritmologii. 2018. 15. 142-156. DOI: 10.15275/annaritmol.2018.3.2. in Russian.

26. Chen Y.-H., Xu S.-J., Bendahhou S., Wang X.-L., Wang Y., Xu W.-Y., Jin H.-W., Sun H., Su X.-Y., Zhuang Q.-N., Yang Y.-Q., Li Y.-B., Liu Y., Xu H.-J., Li X.-F., Ma N., Mou C.-P., Chen Z., Barhanin J., Huang W. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003. 299. 251-254.

27. Abraham R. L., Yang T., Blair M., Roden D. M., Darbar D. Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J. Molec. Cell. Cardiol. 2010. 28. 181-190.

28. Yu X.X., Liao M.Q., Zeng Y.F., Gao X.P., Liu Y.H., Sun W., Zhu S., Zeng F.F., Ye Y.B. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J Diabetes Res. 2020. 2020:7145139. Published 2020 Jul 3. DOI:10.1155/2020/7145139.

29. Zhang W., Wang H., Guan X., Niu Q., Li W. Variant rs2237892 of KCNQ1 Is Potentially Associated with Hypertension and Macrovascular Complications in Type 2 Diabetes Mellitus in A Chinese Han Population. Genomics Proteomics Bioinformatics. 2015. 13(6). 364-70. DOI: 10.1016/j.gpb.2015.05.004.

30. Erfani T., Sarhangi N., Afshari M., Abbasi D., Meybodi H.R.A., Hasanzad M. KCNQ1 common genetic variant and type 2 diabetes mellitus risk. J Diabetes Metab Disord. 2019. 19(1). 47-51. DOI: 10.1007/s40200-019-00473-4.

31. Yu W., Ma R.C., Hu C., So W.Y., Zhang R., Wang C., Tam C.H., Ho J.S., Lu J., Jiang F., Tang S., Ng M.C., Bao Y., Xiang K., Jia W., Chan J.C.N.. Association between KCNQ1 genetic variants and obesity in Chinese patients with type 2 diabetes. Diabetologia. 2012. 55(10). 2655-2659. DOI: 10.1007/s00125-012-2636-8.

32. Chen X.D., Yang Y.J., Li S.Y., Peng Q.Q., Zheng L.J., Jin L., Wang X.F. Several polymorphisms of KCNQ1 gene are associated with plasma lipid levels in general Chinese populations. PLoS One. 2012. 7(3). e34229. DOI: 10.1371/journal.pone.0034229.

33. Rattanatham R., Settasatian N., Komanasin N., Kukongviriyapan U., Sawanyawisuth K., Intharaphet P., Senthong V., Settasatian C. Association of Combined TCF7L2 and KCNQ1 Gene Polymorphisms with Diabetic Micro- and Macrovascular Complications in Type 2 Diabetes Mellitus. Diabetes Metab J. 2021. DOI: 10.4093/dmj.2020.0101


Review

For citations:


Ivanov D.P., Fyodorova A.P., Serebryakova O.V. VOLTAGE-GATED POTASSIUM CHANNELS KV7.1 (KCNQ1): PHYSIOLOGICAL SIGNIFICANCE AND ASSOCIATED PATHOLOGY. Transbaikalian Medical Bulletin. 2022;(2):91-98. (In Russ.) https://doi.org/10.52485/19986173_2022_2_91

Views: 91


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)