Preview

Transbaikalian Medical Bulletin

Advanced search

IMMUNOLOGICAL AND MOLECULAR-GENETIC ASPECTS OF COVID-19

https://doi.org/10.52485/19986173_2022_1_62

Abstract

In  the  weeks  following  the  outbreak  of  the  new  respiratory  infection  COVID-19,  various laboratories  around  the  world  have  sequenced  the  viral  genome,  as  well  as  provided  structural  and functional information about the basic proteins necessary for the virus to survive, which served as a new stage  in the study of  the immunogenetic aspects  of  the disease.  The article examines the pathogenetic mechanisms of the development and course of a new coronavirus infection. The purpose of the article is to consider the immunological and molecular genetic mechanisms of COVID-19 infection at the present stage. Despite  the  achievements  of  modern  science,  by  now,  comprehensive,  large-scale  and  reproducible immunogenetic studies of a new coronavirus infection are needed, which will allow a more accurate study of its pathogenetic mechanisms, including those leading to pneumonia and the rapid, unfavorable progression of  the  disease,  which  ultimately  will  allow  to  the  necessary  links  of  pathogenesis  and  to  prevent  the development of this socially significant disease.

About the Authors

N. A. Miromanova
Chita State Medical Academy
Russian Federation

Chita



B. T. Zagalaev
Chita State Medical Academy
Russian Federation

Chita



A. M. Miromanov
Chita State Medical Academy
Russian Federation

Chita



References

1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. 395 (10224). 565-574. DOI 10.1016/S0140-6736(20)30251-8.

2. Ong S.W.X., Tan Y.K., Chia P.Y., Lee T.H., Ng O.T., Wong M.S.Y. et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. J. Am. Med. Assoc. 2020. 323 (16). 1610-1612. DOI 10.1001/jama.2020.3227.

3. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016. 14 (8). 523-534. DOI 10.1038/nrmicro.2016.81.

4. Verity R., Okell L.C., Dorigatti I., Winskill P., Whittaker C., Imai N. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020. 20 (6). 669-677. DOI 10.1016/S1473-3099(20)30243-7.

5. Department of Economic and Social Affairs / COVID-19: Disrupting lives, economies and societies // United Nation. World Economic Situation And Prospects: April 2020 Briefing, No. 136. Available online at: https://www.un.org/development/desa/dpad/publication/world-economic-situation-and-prospects-april-2020-briefing-no-136/

6. Marra M.A., Jones S.J.M., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S.N. et al. The genome sequence of the SARS-associated coronavirus. Science. 2003. 300 (5624). 1399-1404. DOI 10.1126/science.1085953.

7. Hu W., Yen Y.T., Singh S., Kao C.-L., Wu-Hsieh B.A. SARS-CoV regulates immune function-related gene expression in human monocytic cells. Viral. Immunol. 2012. 25 (4). 277-288. DOI 10.1089/vim.2011.0099.

8. Wu H.-S., Hsieh Y.-C., Su I.-J., Lin T.-H., Chiu S., Hsu Y.-F. et al. Early detection of antibodies against various structural proteins of the SARS-associated coronavirus in SARS patients. J. Biomed. Sci. 2004. 11 (1). 117-126. DOI 10.1159/000075294.

9. Meyer B., Drosten C., Müller M.A. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 2014. 194. 175-83. DOI 1016/j.virusres.2014.03.018.

10. Li G., Chen X., Xu А. Profile of specific antibodies to the SARS-associated coronavirus. N. Engl. J. Med. 2003. 349 (5). 508-509. DOI 10.1056/NEJM200307313490520.

11. Tan W., Lu Y., Zhang J., Wang J., Dan Y., Tan Z. et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv. 2020. Preprint. DOI 10.1101/2020.03.24.20042382.

12. Zhang Y., Xu J., Jia R., Yi C., Gu W., Liu P. et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cell. Mol. Immunol. 2020. 17 (7). 768-770. DOI 10.1038/s41423-020-0438-3.

13. Iwasaki A., Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 2020. 20 (6). 339-341. DOI 10.1038/s41577-020-0321-6.

14. Ricke D.O., Malone R.W. Medical countermeasures analysis of 2019-nCoV and vaccine risks for antibody-dependent enhancement (ADE). Preprint. 2020. DOI 10.20944/preprints202003.0138.v1.

15. Yip M., Leung H., Li P., Cheung C.Y., Dutry I., Li D. et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med. J. 2016. 22. 25-31. https://pubmed.ncbi.nlm.nih.gov/27390007/.

16. Wan Y., Shang J., Sun S., Tai W., Chen J., Geng Q. et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 2020. 94 (5). е02015-19. DOI 10.1128/JVI.02015-19.

17. Cameron M.J., Bermejo-Martin J.F., Danesh A., Muller M.P., Kelvin D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008. 133 (1). 13-19. DOI 10.1016/j.virusres.2007.02.014.

18. Zhou J., Chu H., Li C., Wong B.H.-Y., Cheng Z.-S., Poon V.K.-M. et al. Active replication of middle east respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Dis. 2014. 209 (9). 1331-1342. DOI 10.1093/infdis/jit504.

19. Ng D.L., Hosani F.А., Keating M.K., Gerber S.I., Jones T.L., Metcalfe M.G. et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of middle east respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am. J. Pathol. 2016. 186 (3). 652-658. DOI 10.1016/j.ajpath.2015.10.024.

20. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020. 11. 827. DOI 10.3389/fimmu.2020.00827.

21. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020. 8 (4). 420-422. DOI 10.1016/S2213-2600(20)30076-X.

22. Mehta P., Mcauley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. et al. COVID-19 : consider cytokine storm syndromes and immunosuppression. Lancet. 2020. 395 (10229). 1033-1034. DOI 10.1016/S0140-6736(20)30628-0.

23. Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl. Sci. Rev. 2020. 7 (6). 998-1002. DOI 10.1093/nsr/nwaa041.

24. Zhang Z., Guo L., Lu X., Zhang C., Wang X., Huang L. et al. Vulnerability of children with COVID-19 infection and ACE2 profiles in lungs. SSRN. 2020. 1. 1-18. DOI 10.2139/ssrn.3602441.

25. Pain C.E., Felsenstein S., Cleary G., Mayell S., Conrad K., Harave S. et al. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol. 2020. 2 (7). е376-е379. DOI 10.1016/s2665-9913(20)30137-5.

26. Xiong Y., Liu Y., Cao L., Wang D., Guo M., Jiang A. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 2020. 9 (1). 761-770. DOI 10.1080/22221751.2020.1747363.

27. Schulte-Schrepping J., Reusch N., Paclik D., Babler K., Schlickeiser S., Zhang B. et al. Suppressive myeloid cells are a hallmark of severe COVID-19. medRxiv. 2020. Preprint. DOI 10.1016/j.cell.2020.08.001.

28. Rubio I., Osuchowski M.F., Shankar-Hari M., Skirecki T., Winkler M.S., Lachmann G. et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect. Dis. 2019. 19 (12). e422-e436. DOI 10.1016/S1473-3099(19)30567-5.

29. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen G.X., Marques M.B., Monestier M. et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J. Clin. Invest. 2012. 122 (7). 2661-2671. DOI 10.1172/JCI61303.

30. Sreeramkumar V., Adrover J.M., Ballesteros I., Cuartero M.I., Rossaint J., Bilbao I. et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014. 346(6214). 1234-1238. DOI 10.1126/science.1256478.

31. Guo C., Li B., Ma H., Wand X., Cai. P., Yu Q. et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat. Commun. 2020. 11 (1). 3924. DOI 10.1038/s41467-020-17834-w.

32. Moots R.J., Sebba A., Rigby W., Ostor A., Porter-Brown B., Donaldson F. et al. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology (Oxford). 2017. 56 (4). 541-549. DOI 10.1093/rheumatology/kew370.

33. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020. 26 (6). 842-844. DOI 10.1038/s41591-020-0901-9.

34. Gubernatorova E.O., Gorshkova E.A., Polinova A.I., Drutskaya M.S. IL‐6: relevance for immunopathology of SARS‐CoV‐2. Cytokine Growth Factor Rev. 2020. 53. 13-24. DOI 10.1016/j.cytogfr.2020.05.009.

35. Kadkhoda K. COVID‐19: an immunopathological view. mSphere. 2020. 5 (2). e00344–20. DOI 10.1128/mSphere.00344-20.

36. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H. et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020. 130 (5). 2620-2629. DOI 10.1172/JCI137244.

37. Hung I.F.-N., Lung K.-C., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.Y. et al. Triple combination of interferon beta‐1b, lopinavir‐ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID‐19: an open‐label, randomised, phase 2 trial. Lancet. 2020. 95 (10238). 1695-1704. DOI 1016/S0140-6736(20)31042-4.

38. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. 46 (5). 846-848. DOI 10.1007/s00134-020-05991-x.

39. Herold T., Jurinovic V., Arnreich C., Lipwort B., Hellmuth J.C., von Bergwelt-Baildon M. et al. Elevated levels of IL‐6 and CRP predict the need for mechanical ventilation in COVID‐19. J. Allergy Clin. Immunol. 2020. 146 (1). 128-136. DOI 10.1016/j.jaci.2020.05.008.

40. Li W., Sui J., Huang I.C., Kuhn J.H., Radoshitzky S.R., Marasco W.A. et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology. 2007. 367 (2). 367-374. DOI 10.1016/j.virol.2007.04.035.

41. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. 579 (7798). 270-273. DOI 10.1038/s41586-020-2012-7.

42. Ansari M.A., Marchi E., Ramamurthy N., Aschenbrenner D., Hackstein C.-P., Bowden R. et al. A gene locus that controls expression of ACE2 in virus infection. medRxiv. 2020. Preprint. DOI 10.1101/2020.04.26.20080408.

43. Chan V.S., Chan K.Y., Chen Y., Poon L.L.M., Cheung A.N.Y., Zheng B. et al. Homozygous L‐SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat. Genet. 2006. 38 (1). 38-46. DOI 10.1038/ng1698.

44. Jeffers S.A., Tusell S.M., Gillim‐Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J. et al. CD209L (L‐SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA. 2004. 101 (44). 15748-15753. DOI 10.1073/pnas.0403812101.

45. Pöhlmann S., Zhang J., Baribaud F., Chen Z., Leslie G.J., Lin G. et al. Hepatitis C virus glycoproteins interact with DC‐SIGN and DC‐SIGNR. J. Virol. 2003. 77 (7). 4070-4080. DOI 10.1128/jvi.77.7.4070-4080.2003.

46. Ip W.K., Chan K.H., Law H.K., Tso G.H.W., Kong E.K.P., Wong W.H.S. et al. Mannose‐binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 2005. 191 (10). 1697-1704. DOI 10.1086/429631.

47. Zhang H., Zhou G., Zhi L., Yang H., Zhai Y., Dong X. et al. Association between mannose‐binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 2005. 192 (8). 1355-1361. DOI 10.1086/491479.

48. Eisen D.P. Mannose‐binding lectin deficiency and respiratory tract infection. J. Innate Immun. 2010. 2 (2). 114-122. DOI 10.1159/000228159.

49. Yuan F.F., Tanner J., Chan P.K., Biffin S., Dyer W.B., Geczy A.F. et al. Influence of FcgammaRIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens. 2005. 66 (4). 291-296. DOI 10.1111/j.1399-0039.2005.00476.x.

50. Lau Y.L., Peiris J.S. Association of cytokine and chemokine gene polymorphisms with severe acute respiratory syndrome. Hong Kong Med. J. 2009. 15 (2). 43-46. https://pubmed.ncbi.nlm.nih.gov/19258635/.

51. Smith C.A., Tyrell D.J., Kulkarni U.A., Wood S., Leng L., Zemans R.L. et al. Macrophage migration inhibitory factor enhances influenza‐associated mortality in mice. JCI Insight. 2019. 4 (13). e128034. DOI 10.1172/jci.insight.128034.

52. Savva A., Brouwer M.C., Roger T., Serón M.V., Roy D.L., Ferwerda B. et al. Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis. Proc. Natl. Acad. Sci. USA. 2016. 113(13). 3597-3602. DOI 10.1073/pnas.1520727113.

53. Ng M.H.L., Lau K.-M., Li L., Cheng S.-H., Chan W.Y., Hui P.K. et al. Association of human‐leukocyte‐antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 2004. 190 (3). 515-518. DOI 10.1086/421523.

54. Kirtipal N., Bharadwaj S. Interleukin 6 polymorphisms as an indicator of COVID‐19 severity in humans. J. Biomol. Struct. Dyn. 2020. 1-3. DOI 10.1080/07391102.2020.1776640.

55. Ulhaq Z.S., Soraya G.V. Anti‐IL-6 receptor antibody treatment for severe COVID‐19 and the potential implication of IL-6 gene polymorphisms in novel coronavirus pneumonia. Med. Clin. (Engl. Ed.). 2020. 155 (12). 548-556. DOI 10.1016/j.medcle.2020.07.014.

56. Strollo R., Pozzilli P. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab. Res. Rev. 2020. 36 (8). е3330. DOI 10.1002/dmrr.3330.

57. Raj V.S., Mou H., Smits S.L., Dekkers D.H.W., Müller M.A., Dijkman R. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013. 495. 251-254. DOI 10.1038/nature12005.

58. Vankadari N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020. 9 (1). 601-604. DOI 10.1080/22221751.2020.1739565.

59. Wang Q., Qi J., Yuan Y., Xuan Y., Han P., Wan Y. et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host. Microbe. 2014. 16 (3). 328-337. DOI 10.1016/j.chom.2014.08.009.

60. Kleine-Weber H., Schroeder S., Krüger N., Prokscha A., Naim H.Y., Müller M.A. et al. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 2020. 9 (1). 155-168. DOI 10.1080/22221751.2020.1713705.


Review

For citations:


Miromanova N.A., Zagalaev B.T., Miromanov A.M. IMMUNOLOGICAL AND MOLECULAR-GENETIC ASPECTS OF COVID-19. Transbaikalian Medical Bulletin. 2022;(1):62-70. (In Russ.) https://doi.org/10.52485/19986173_2022_1_62

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)