Ischemic stroke as a genetical disease
https://doi.org/10.52485/19986173_2022_4_107
Abstract
Ischemic stroke is a multifactorial disease, the pathogenesis of which is closely related to genetic predisposition. The results of the conducted studies indicate an increased risk of ischemic stroke in the presence of an aggravated family history. It has been established that the development of acute cerebral ischemia under the age of 65 increases the risk of acute cerebrovascular accident in the next of kin by 4 times. It is also known that stroke occurring at a young age is more associated with the carriage of various genetic polymorphisms than with the presence of cardiovascular risk factors.
The literature review presents current data on acute cerebrovascular pathology and its relationship with the carriage of various polymorphic variants of genes: the renin-angiotensin-aldosterone system (RAAS), genes that regulate endothelial function, folate metabolism, and ion channels.
About the Authors
A. Yu. Ma-Van-deRussian Federation
39 A Gorkogo str., Chita, 672000
Yu. A. Vitkovsky
Russian Federation
39 A Gorkogo str., Chita, 672000
References
1. WHO publishes statistics on the leading causes of death and disability worldwide for the period 2000–2019. URL: https://www.who.int/ru/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. (date of access: 10.11.2022). In Russian.
2. Groppa S., Zota E., Crivorucica I. Accidentul vascular cerebral ischemic: Protocol clinic instituțional. Chisinau. Romanian. 2018.
3. Gusev E.I., Konovalov A.N., Gekht A.B. Neurology. National leadership. Moscow: GEOTAR- Media. 2019. In Russian.
4. Groppa S. In the Republic of Moldova there is an epidemic of cerebral vascular diseases. Moldova. 2019.
5. Iwai M., Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009. 32(7). 533- 536.
6. Wang S.Q., Wu Y.Q., Cheng X.S., Cheng K.C. Relationship between angiotensin-converting enzyme and angiotensinogen gene polymorphism and coronary artery disease. Journal of Nanchang University (Medical Science). 2010. 50(8). 8–11.
7. El Alfy M.S., Ebeid F., Kamal T.M., Eissa D.S., Ismail E.A.R., Mohamed S.H. Angiotensinogen M235T gene polymorphism is a genetic determinant of cerebrovascular and cardiopulmonary morbidity in adolescents with sickle cell disease. Journal of Stroke and Cerebrovascular Diseases. 2019. 28(2). 441–449.
8. Institute for Health Metrics and Evaluation (IHME) (2018). Findings from the Global Burden of Disease Study 2017. http://www.healthdata.org/policy-report/findings-global-burden-disease-study-2017. (date of access: 27. 04. 2022).
9. Qiu X.J., Liu X., et al. Polymorphism of angiotensinogen gene M235T in myocardial infarction and brain infarction: a meta-analysis. Gene. 2013. 529 (1). 73-79.
10. Isordia-Salas I., Santiago-Germán D., Cerda-Mancillas M.C., et al. Gene polymorphisms of angiotensin-converting enzyme and angiotensinogen and risk of idiopathic ischemic stroke. Gene. 2019. 688. 163-170.
11. Bhushan S., Xiao Z., Gao K., et al. Role and Interaction Between ACE1, ACE2 and Their Related Genes in Cardiovascular Disorders. Curr Probl Cardiol. 2022. 2:101162.
12. Shin B.S., Oh S.Y., Kim Y.S., Kim K.W. The paraoxonase gene polymorphism in stroke patients and lipid profile. Acta Neurol Scand. 2008. 117. 237-243.
13. Goyal A., Saluja A., Saraswathy KN., Bansal P., Dhamija RK. Role of ACE Polymorphism in Acute Ischemic Stroke. Neurol India. 2021. 69(5). 1217-1221.
14. Shishkin A.N., Lyndina M.L. Endothelial dysfunction and arterial hypertension. Arterial hypertension. 2008.14(4). 315-319. In Russian.
15. Musa A., Abir R. Polymorphism in Endothelin-1 Gene: An Overview. Current Clinical Pharmacology. 2016. 11(3). 191-210.
16. Kumar A., Vivekanandhan S., Srivastava A., Tripathi M., Padma Srivastava M.V., Saini N., et al. Association between angiotensin converting enzyme gene insertion/deletion polymorphism and ischemic stroke in north Indian population: A case-control study and meta-analysis. Neurol Res. 2014. 36. 786-794.
17. Estrada V., Egido J., Fernández ‐ Durango R., Fernández Cruz, A., Moya, J., Téllez, M. J. High plasma levels of endothelin ‐ 1 and atrial natriuretic peptide in patients with acute ischemic stroke. American Journal of Hypertension. 1994. 7(12). 1085–1089.
18. Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018. 14 (4). 618-625.
19. Ko N. U., Rajendran P., Kim H., et.al. Endothelial nitric oxide synthase polymorphism (-786T- >C) and increased risk of angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2008. 39 (4). 1103-1108.
20. An L., Shen, Y., Chopp, M., Zacharek, A. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging and disease. 2021. 12(3). 732–746.
21. Huang L.W, Li L.L, Li J., Chen X.R, Yu M. Association of the methylenetetrahydrofolate reductase (MTHFR) gene variant C677T with serum homocysteine levels and the severity of ischemic stroke: a case-control study in the southwest of China. J Int Med Res. 2022. 50(2):3000605221081632.
22. Malinow M.R., Bostom A.G., Kraus R.M. Circulation. 1999. 99. 178–182
23. Zaric B.L., Obradovic M., V Bajic., Haidara M.A., Jovanovic M., Isenovi E.R. Homocysteine and Hyperhomocysteinaemia. Curr. Med. Chem. 2019. 26 (16). 2948–2961.
24. Stepanova T.V., Ivanov A.N., Tereshkina N.E. Markers of endothelial dysfunction: pathogenetic role and diagnostic value (literature review). Clinical laboratory diagnostics. 2019. 34–41. In Russian.
25. Kumar P., Mishra A., Prasad M.K., Verma V., Kumar A. Relationship of Methylenetetrahydrofolate Reductase (MTHFR) C677T Variation with Susceptibility of Patients with Ischemic Stroke: A Meta-Analysis. Cureus. 2022. 14(8):e28218.
26. Wei. L.K., Au A., Menon S., et al. Polymorphisms of MTHFR, eNOS, ACE, AGT, ApoE, PON1, PDE4D, and Ischemic Stroke: Meta-Analysis. J Stroke Cerebrovasc Dis. 2017. 26(11). 2482- 2493.
27. Smolnova T.Yu., Nechaeva G.I., Loginova E.N. The role of reduced CACNA1C gene expression in the development of certain conditions in physician practice. Clinical medicine. 2020. 13-19. In Russian.
28. Rodan L.H., Spillmann R.C., Kurata H.T. Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations. Genet Med. 2021. 23(10). 1922-1932.
29. Smedler E., Pålsson E., Hashimoto K., Landén M. Association of CACNA1C polymorphisms with serum BDNF levels in bipolar disorder. Br J Psychiatry. 2021. 218(2). 77-79.
30. Chen M., Jiang Q., Zhang L. CACNA1C Gene rs1006737 Polymorphism Affects Cognitive Performance in Chinese Han Schizophrenia. Neuropsychiatr Dis Treat. 2022.18. 1697-1704.
31. Zhang H., Pushkarev B., Zhou J., et al. CACNA1C rs1006737 SNP increases the risk of essential hypertension in both Chinese Han and ethnic Russian people of Northeast Asia. Medicine (Baltimore). 2021. 100(8):e24825.
32. Korte N., Ilkan Z., Pearson C.L., et al. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J Clin Invest. 2022. 132(9):e154118.
33. Maiques O., Macià A., Moreno S., et al. Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. Br J Dermatol. 2017.176 (5). 1247–1258.
Review
For citations:
Ma-Van-de A., Vitkovsky Yu.A. Ischemic stroke as a genetical disease. Transbaikalian Medical Bulletin. 2022;(4):107-113. (In Russ.) https://doi.org/10.52485/19986173_2022_4_107