Preview

Transbaikalian Medical Bulletin

Advanced search

KIR6.2 SUBUNIT OF THE ATP-SENSITIVE POTASSIUM CHANNEL: PHYSIOLOGICAL ROLE, GENETIC MUTATIONS

https://doi.org/10.52485/19986173_2021_3_93

Abstract

This review contains information about the structure and principles of functioning of ATP-sensitive potassium channels. The article presents information about the physiological role of the Kir6.2 subunit of ATP-sensitive K + channels in various tissues, and the pathology associated with mutations in the KCNJ11 gene, which regulates the work of Kir6.2.

About the Authors

A. P. Fyodorova
Chita State Medical Academy
Russian Federation

39a Gorky str., Chita, 672000



D.  N. Zaytsev
Chita State Medical Academy
Russian Federation

39a Gorky str., Chita, 672000



O. V. Serebryakova
Chita State Medical Academy
Russian Federation

39a Gorky str., Chita, 672000



References

1. Mel'nikov K.N., Vislobokov A.I., Kolpakova M.E., Borisova V.A., Ignatov Yu.D. Potassium of ionic channels of cellular membranes. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2009. 1. 3-27. in Russian.

2. Mironov N.Yu., Golitsyn S.P. Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications. Kardiologiya. 2013. 11. 66-73. in Russian.

3. Grizel' A.V. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae. 2014. 4 (23). 12-28. in Russian.

4. Zefirov A.L., Sitdikova G.F. Ion channels of excitable cell (structure, function, pathology). Kazan'. 2010. 270. in Russian.

5. Hibino H., Inanobe A., Furutani K., Murakami S., Findlay I., Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010. 90 (1). 291-366. DOI 10.1152/physrev.00021.2009.

6. Aziz Q., Li Y., Anderson N., Ojake L., Tsisanova E., Tinker A. Molecular and functional characterization of the endothelial ATP-sensitive potassium channel. J Biol Chem. 2017. 292 (43). 17587-17597. DOI 10.1074/jbc.M117.810325.

7. Huang Y., Hu D., Huang C., Nichols C.G. Genetic Discovery of ATP-Sensitive K+ Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol. 2019. 12 (5). e007322. DOI 10.1161/CIRCEP.119.007322.

8. Castro L., Noelia M., Vidal-Jorge M., Sánchez-Ortiz D., Gándara D., Martínez-Saez E., Cicuéndez M., Poca M.A., Simard J.M., Sahuquillo J. Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. J Neurotrauma. 2019. 36 (1). 165-175. DOI 10.1089/neu.2017.5619.

9. Shi W.W., Yang Y., Shi Y., Jiang C. K(ATP) channel action in vascular tone regulation: from genetics to diseases. Sheng Li Xue Bao. 2012. 64 (1). 1-13.

10. Yoshida H., Feig J.E., Morrissey A., Ghiu I.A., Artman M., Coetzee W.A. K ATP channels of primary human coronary artery endothelial cells consist of a heteromultimeric complex of Kir6.1, Kir6.2, and SUR2B subunits. J Mol Cell Cardiol. 2004. 37 (4). 857-69. DOI 10.1016/j.yjmcc.2004.05.022.

11. Wu J.X., Ding D., Wang M., Kang Y., Zeng X., Chen L. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein Cell. 2018. 9 (6). 553-567. DOI 10.1007/s13238-018-0530-y.

12. Walczewska-Szewc K., Nowak W. Structural Determinants of Insulin Release: Disordered NTerminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. J Phys Chem B. 2020. 124 (29). 6198-6211. DOI 10.1021/acs.jpcb.0c02720.

13. Du Q., Jovanović S., Sukhodub A., Ngoi Y.S., Lal A., Zheleva M., Jovanović A. Insulin downregulates cardioprotective SUR2A in the heart-derived H9c2 cells: A possible explanation for some adverse effects of insulin therapy. Biochem Biophys Rep. 2018. 16. 12-18. DOI 10.1016/j.bbrep.2018.08.005.

14. Tsirkin V. I., Trukhina V. I., Trukhin A. N. Neurophysiology: fundamentals of neurophysiology. University textbook. Moskva. Yurayt. 2020. 504. in Russian.

15. De Franco E., Saint-Martin C., Brusgaard K., Knight Johnson A.E., Aguilar-Bryan L., Bowman P., Arnoux J.B., Larsen A.R., Sanyoura M., Greeley S., Calzada-León R., Harman B., Houghton J., Nishimura-Meguro E., Laver T.W., Ellard S., Del Gaudio D., Christesen H.T., BellannéChantelot C., Flanagan S.E. Update of variants identified in the pancreatic β-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020. 41 (5). 884-905. DOI 10.1002/humu.23995.

16. Barrett T.G. Differential diagnosis of type 1 diabetes: which genetic syndromes need to be considered? Pediatr Diabetes. 2007. 6. 15-23. DOI 10.1111/j.1399-5448.2007.00278.x.

17. Ashcroft F.M., Puljung M.C., Vedovato N. Neonatal Diabetes and the KATP Channel: From Mutation to Therapy. Trends Endocrinol Metab. 2017. 28 (5). 377-387. DOI 10.1016/j.tem.2017.02.003.

18. Hashimoto Y., Dateki S., Hirose M., Satomura K., Sawada H., Mizuno H., Sugihara S., Maruyama K., Urakami T., Sugawara H., Shirai K., Yorifuji T. Molecular and clinical features of KATP - channel neonatal diabetes mellitus in Japan. Pediatr Diabetes. 2017. 18 (7). 532-539. DOI 10.1111/pedi.12447.

19. Demirbilek H., Rahman S.A., Buyukyilmaz G.G., Khalid H. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. Int J Pediatr Endocrinol. 2017. 9. DOI 10.1186/s13633-017-0048-8.

20. Koo B.K., Cho Y.M., Park B.L., Cheong H.S., Shin H.D., Jang H.C., Kim S.Y., Lee H.K., Park K.S. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population. Diabet Med. 2007. 24 (2). 178-86. DOI 10.1111/j.1464-5491.2006.02050.x.

21. Haghvirdizadeh P., Mohamed Z., Abdullah N.A., Haghvirdizadeh P., Haerian M.S., Haerian B.S. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res. 2015. 2015. 908152. DOI 10.1155/2015/908152.

22. Zhuang L., Zhao Y., Zhao W., Li M., Yu M., Lu M., Zhang R., Ge X., Zheng T., Li C, Yin J., Yin J., Bao Y., Liu L., Jia W., Liu Y. The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem. 2015. 404 (1-2). 133-41. DOI 10.1007/s11010-015-2373-7.

23. Fedele F., Mancone M., Chilian W.M., Severino P., Canali E., Logan S., De Marchis M.L., Volterrani M., Palmirotta R., Guadagni F. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic Res Cardiol. 2013. 108 (6). 387. DOI 10.1007/s00395-013-0387-4.

24. Severino P., D'Amato A., Netti L., Pucci M., Mariani M.V., Cimino S., Birtolo L.I., Infusino F., De Orchi P., Palmirotta R., Lovero D., Silvestris F., Caputo V., Pizzuti A., Miraldi F., Maestrini V., Mancone M., Fedele F. Susceptibility to ischaemic heart disease: Focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors. Eur J Prev Cardiol. 2020. 2. 2047487320926780. DOI 10.1177/2047487320926780.

25. URL: https://www.ncbi.nlm.nih.gov/clinvar/variation/8678/ (дата обращения: 07.05.2021)

26. Xi H.L., Liu J.F., Li L., Wan J. Relationship between dilated cardiomyopathy and the E23K and I337V polymorphisms in the Kir6.2 subunit of the KATP channel. Genet Mol Res. 2013. 12(4). 4383-92. DOI 10.4238/2013.October.10.4.

27. Reyes S., Terzic A., Mahoney D.W., Redfield M.M., Rodeheffer R.J., Olson T.M. K(ATP) channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Hum Genet. 2008. 123 (6). 665-7. DOI 10.1007/s00439-008-0519-3.

28. Han Y.Y., Wang L.J., Zhang L., Ma K.T., Li L., Si J.Q. Association between potassium channel SNPs and essential hypertension in Xinjiang Kazak Chinese patients. Exp Ther Med. 2017. 14 (3). 1999-2006. DOI 10.3892/etm.2017.4734.

29. Zheleznyakova A.V., Vikulova O.K., Savelyeva S.A., Nosikov V.V., Shestakova M.V. An analysis of the association between a polymorphism rs5219 of KCNJ11 and GFR in CKD development in patients with type 2 diabetes in Russian population. Problems of Endocrinology. 2016. 62 (5). 11-12. in Russian. DOI 10.14341/probl201662511-12.

30. Reyes S., Park S., Johnson B.D., Terzic A., Olson T.M. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009. 126 (6). 779-789. DOI 10.1007/s00439-009-0731-9.

31. Pozdnyakov N.O., Kagarmanyan I.N., Miroshnikov A.E., Emelyanov E.S., Gruzdeva A.A., Sirotkina A.M., Dukhanina I.A., Milkina A.A., Khokhlov A.A., Pozdnyakov S.O. Pharmacogenetic Aspects of Type 2 Diabetes Treatment. Acta Biomedica Scientifica. 2020. 5 (3). 13-23. in Russian. DOI 10.29413/ABS.2020-5.3.2.

32. Shorokhova P.B., Zagorodnikova K.A., Baranov V.L., Vorokhobina N.V. The value polymorphism in gen KCNJ11, ABCC8 and TCF7L2 for response to therapy of the main oral hypoglycemic drugs. Pharmacogenetics and Pharmacogenomics. 2018. 1. 9-14. in Russian. DOI 10.24411/2588-0527-2018-10002.


Review

For citations:


Fyodorova A.P., Zaytsev D.N., Serebryakova O.V. KIR6.2 SUBUNIT OF THE ATP-SENSITIVE POTASSIUM CHANNEL: PHYSIOLOGICAL ROLE, GENETIC MUTATIONS. Transbaikalian Medical Bulletin. 2021;(3):93-100. (In Russ.) https://doi.org/10.52485/19986173_2021_3_93

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)