Reverse transport of cholesterol and its regulation through molecular mechanisms (message 2)
https://doi.org/10.52485/19986173_2021_1_95
Abstract
The multistage process of reverse cholesterol transport is under the control of microRNAs, which have been widely studied in recent decades. MicroRNAs control intracellular lipid synthesis, transport of lipids, including cholesterol, from the cell and the entry of LP into the cell, LP formation, β-oxidation of fatty acids. Thus, microRNAs take part in lipid metabolism at different stages. Some of microRNAs control the reverse flow of cholesterol. At the stage of cholesterol outflow from foam cells and the formation of mature HDL particles, an important role is played by microRNAs that regulate the expression of ATP-binding cassette transporters A1(ABCА1) and G1 (ABСG1); these are miR-33 a / b, miR-758, miR-144, miR-26, miR-27a / b, miR-148a, miR-128-1, miR-302a. It has also been shown that microRNAs are involved in the selective uptake of cholesterol through class B, type I scavenger receptors for HDL in the liver: miR-185, miR-96, miR-223, miR-125, miR-145. Due to the extensive participation of miRNAs in the reverse flow of cholesterol, they are of interest as therapeutic targets for the correction of atherosclerosis. There is evidence of an increase in plasma HDL when miR-33is inhibited. Another microRNA (miR-223) may be a predictor of myocardial infarction.
About the Authors
L. O. GutsolRussian Federation
1 Krasnogo Vosstaniya str., Irkutsk, 664003
L. N. Minakina
Russian Federation
1 Krasnogo Vosstaniya str., Irkutsk, 664003
I. E. Egorova
Russian Federation
1 Krasnogo Vosstaniya str., Irkutsk, 664003
I. Z. Seminskiy
Russian Federation
1 Krasnogo Vosstaniya str., Irkutsk, 664003
References
1. Bartel D. P. MicroRNAs: target recognition and regulatory functions. Cell. 2009. 136. 215-233. DOI: 10.1016/j.cell.2009.01.002.
2. Krek A., Grun D., Poy M. N. Combinatorial microRNA target predictions. Nat Genet. 2005. 37. 495-500. DOI: 10.1038/ng1536.
3. Song M. A., Paradis A. N., Gay M. S., Shin J., Zhang L. Differential expression of microRNAs in ischemic heart disease. Drug Discov Today. 2015. 20 (2). 223-235. DOI: 10.1016/j.drudis.2014.10.004.
4. Fernández-Hernando C., Ramírez C. M., Goedeke L., Suárez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013. 33 (2). 178-185. DOI: 10.1161/ATVBAHA.112.300144.
5. Ambros V. The functions of animal microRNAs. Nature. 2004. 431. 350-355.
6. Filipowicz W., Bhattacharyya S. N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008. 9. 102-114.
7. Carrington J. C., Ambros V. Role of microRNAs in plant and animal development. Science. 2003. 301. 336-338. DOI: 10.1126/science.1085242.
8. Rottiers V., Naar A. M. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012. 13. 239-250.
9. Jeon T. I., Osborne T. F. miRNA and cholesterol homeostasis. Biochim Biophys Acta. 2016. 1861 (12 Pt B). 2041–2046.
10. Najafi-Shoushtari S. H., Kristo F., Li Y. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010. 328. 1566-1569. DOI: 10.1126/science.1189123.
11. Koh Ono M. D. Functions of microRNA-33a/b and microRNA therapeutics. Journal of Cardiology. 2016. 67 (1). 28-33.
12. Dávalos A., Goedeke L., Smibert P., Ramírez C. M., Warrier N. P., Andreo U., Cirera-Salinas D., Rayner K., Suresh U., Pastor-Pareja J. C., Esplugues E., Fisher E. A., Penalva L. O., Moore K. J., Suárez Y., Lai E. C., Fernández-Hernando C. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011. 108 (22). 9232- 9237. DOI: 10.1073/pnas.1102281108.
13. Madison B. B. Srebp2:A Master Regulator of Sterol and Fatty Acid Synthesis. J. Lipid Res. 2019. 6. 1-8.
14. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010. 501. 177-181. DOI: 10.1016/j.abb.2010.06.004.
15. Xu X., Bao-Liang S. SREBP: a novel therapeutic target. Acta Biochimica et Biophysica Sinica. 2013. 45 (1). 2–10. DOI: 10.1093/abbs/gms112.
16. Herrera-Merchan A., Cerrato C., Luengo G., Dominguez O., Piris M. A., Serrano M., Gonzalez S. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell cycle (Georgetown, Tex.). 2010. 9 (16). 3277-3285.
17. Fuster J. J., Andrés V. A role for miR-33 in p53 regulation: New perspectives for hematopoietic stem cell research. Cell cycle (Georgetown, Tex.). 2010. 9 (17). 3397-3398.
18. Li B. R., Xia L. Q., Liu J., Liao L. L., Zhang Y., Deng M., Zhong H. J., Feng T. T., He P. P., Ouyang X. P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR. Biochem Biophys Res Commun. 2017. 494 (1-2). 384-389. DOI: 10.1016/j.bbrc.2017.09.150.
19. Ramirez C. M., Rotllan N., Vlassov A. V. Control of Cholesterol Metabolism and Plasma HDL Levels by miRNA-144. Circ Res. 2013. 112 (12).1529-1531.
20. de Aguiar V.T., Tarling E., Kim T. et al. MicroRNA-144 Regulates Hepatic ABCA1 and Plasma HDL Following Activation of the Nuclear Receptor FXR. Circ Res. 2013. 112 (12). 1602-1612.
21. Zhang M., Wu J. F., Chen W. J. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014. 234. 54-64.
22. Goedeke L., Rotllan N., Ramirez C. M. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis. 2015. 243. 499-509.
23. Sun D., Zhang J., Xie J., Wei W., Chen M., Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Letters. 2012. 586 (10). 1472-1479. DOI: 10.1016/j.febslet.2012.03.068.
24. Goedeke L., Rotllan N., Canfran-Duque A., Aranda J. F., Ramirez C. M., Araldi E., Lin C.-S., Anderson N. N., Wagschal F., de Cabo R., Horton J. D., Lasuncion M. A., Näär A. M., Suarez Y., Fernandes-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med. 2015. 21. 1280-1289.
25. Goedeke L., Wagschal A., Fernández-Hernando C., NäärA. M. miRNA regulation of LDL- cholesterol metabolism. Biochim Biophys Acta. 2016. 1861 (12 Pt B). 2047-2052.
26. Wagschal A., Najafi-Shoushtari S. H., Wang L. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med. 2015. 21. 1290-1297. DOI: 10.1038/nm.3980.
27. Adlakha Y.K., Khanna S., Singh R., Singh V.P., Agrawal A., Saini N. Pro-apoptotic miRNA- 128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis. 2013. 4 (8). e780.
28. Meiler S., Baumer Y., Toulmin E. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol. 2015. 35. 323-331.
29. Wang L., Jia X. J., Jiang H. J. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 2013. 33. 1956-1964.
30. Vickers K.C., Landstreet S.R., Levin M.G, Shoucri B.M., Toth C.L., Taylor R. C., Palmisano B.T., Tabet F., Cui H.L., Rye K.-A., Sethupathy P., Remalery A. T. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA. 2014. 111. 14518-14523.
31. Hu Z., Shen W.J., Kraemer F.B., Azhar S. MicroRNAs 125a and 455 repress lipoprotein- supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol. 2012. 32 (24). 5035-5045. DOI: 10.1128/MCB.01002-12.
32. Wang M., Li L., Liu R., Song Y., Zhang X., Niu W., Kumar A. K., Guo Z., Hu Z. Obesity- induced overexpression of miRNA-24 regulates cholesterol uptake and lipid metabolism by targeting SR-B1. Gene. 2018. 668. 196-203. DOI: 10.1016/j.gene.2018.05.072.
33. Baldán Á., de Aguiar V. T. Q. miRNAs and High-Density Lipoprotein Metabolism. Biochim Biophys Acta. 2016. 1861 (12 Pt B). 2053-2061. DOI: 10.1016/j.bbalip.2016.01.021.
34. Solly E.L., Dimasi C.G., Bursill C.A., Psaltis P.J., Tan J.T.M. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis .J Clin Med. 2019. 8 (12). 2199. DOI: 10.3390/jcm8122199.
35. Li C., Fang Z., Jiang T., Zhang Q., Liu C., Zhang C., Xiang Y. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med. Genom. 2013. 6. 16. DOI: 10.1186/1755-8794-6-16.
Review
For citations:
Gutsol L.O., Minakina L.N., Egorova I.E., Seminskiy I.Z. Reverse transport of cholesterol and its regulation through molecular mechanisms (message 2). Transbaikalian Medical Bulletin. 2021;(1):95-102. (In Russ.) https://doi.org/10.52485/19986173_2021_1_95