Preview

Transbaikalian Medical Bulletin

Advanced search

The pattern of circulating micrornas in acute myocardial infarction

https://doi.org/10.52485/19986173_2025_2_140

Abstract

   Acute myocardial infarction (AMI) is a potential life-threatening complication of coronary heart disease and occupies a leading place in the mortality structure of the population. In recent years, methods of early diagnosis of AMI and comorbid conditions have been improved, which can play an important role in a personalized approach to therapy and prediction of outcomes and complications. The problem of developing and introducing new sensitive and specific biochemical and molecular biomarkers of AMI into real clinical practice is of great interest to Russian and foreign researchers.

   The purpose of this thematic review is to search, summarize and systematize the results of fundamental and clinical studies of the role of microRNAs as sensitive and specific molecular biomarkers of AMI.

   The authors conducted a search for publications in the databases PubMed, Web of Science, Scopus, Cochrane Library, Springer, ClinicalKey, Oxford Press, e-Library using keywords and their combinations. Publications from 2009–2024, including original clinical studies of AMI, were analyzed. As a result of this review, it was shown that circulating miR-1, miR-133a, and miR-208a can be considered promising molecular biomarkers of AMI. The presented brief review indicates that the early diagnosis of AMI has prospects for development due to the development and introduction into real clinical practice of new laboratory tests, including the study of the level of circulating microRNAs in the blood from the first hours of the development of acute coronary syndrome.

About the Authors

М. М. Petrova
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Doctor of Medical Sciences, Professor, Head of the Department

Department Polyclinic Therapy with Course of Postgraduate Education

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk

Researcher ID: L-5623-2014; Elibrary (Author ID): 613080; Author ID (Scopus): 23987271200



N. A. Shnayder
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology
Russian Federation

Doctor of Medical Sciences, Professor, General Researcher, Leading Researcher

Institute of Personalized Psychiatry and Neurology; Center of Collective Usage
«Molecular and Cell Technologies»

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk; 192019; 3 Bekhterev St.; St. Petersburg

Researcher ID: M-7084-2014; Elibrary (Author ID): 185359; Author ID (Scopus): 24503222300



D. V. Dmitrenko
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Doctor of Medical Sciences, Associate Professor, Head of the Department, Head of the Center, Head of the Laboratory

IPE; Department of Medical Genetics and Clinical Neurophysiology; Neurological Center for Epileptology, Neurogenetics and Brain Research; Laboratory of Medical Genetics

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk

Researcher ID: H-7787-2016; Elibrary (Author ID): 614958; Author ID (Scopus): 55413907300



A. V. Petrov
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Student

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk

Researcher ID: AGZ-3730-2022; Elibrary (Author ID): 1154385; Author ID (Scopus): 5737505540



D. S. Kaskaevа
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Candidate of Medical Science, Associate Professor, Head of the Department

Department Polyclinic Therapy with Course of Postgraduate Education; Department of General Medical Practice

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk

Researcher ID: S-8106-2016; Elibrary (Author ID): 543648; Author ID (Scopus):
48662493200



A. A. Evsyukov
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Candidate of Medical Science, Associate Professor

Department Polyclinic Therapy with Course of Postgraduate Education

660022; 1 Partizan Zheleznyak St.; Krasnoyarsk

Elibrary (Author ID): 543649; Author ID (Scopus): 6602687133



References

1. Ojha N., Dhamoon A.S. Myocardial Infarction [Internet]. 2023 Aug [cited 2024 Sept 20]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537076/

2. Popov A.P., Soprunov N.I. Heart disease: Ischemic heart disease (IHD). Science Bulletin. 2019; 2(11): 49-53. in Russian

3. Gmurov D.V., Parfenteva M.A., Semenova Y.V. Coronary heart disease. Colloquium Journal. 2020; 29(81): 32-37. in Russian

4. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020; 25(11): 4076. in Russian. DOI: 10.15829/29/1560-4071-2020-4076.

5. World Health Organization. The top 10 causes of death [Internet]. 2024 Aug [cited 2024 Oct 13]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death

6. Ngo Bilong Ekedi Anzh Veronik , Akselrod A.S., Shchekochikhin D.Iu., et al. Contemporary diagnostic algorithm for coronary artery disease: achievements and prospects. Russian Journal of Cardiology and Cardiovascular Surgery. 2019; 12(5): 418 428. in Russian. DOI: 10.17116/kardio201912051418.

7. Chaulin A.M., Duplyakov D.V. Biomarkers of Acute Myocardial Infarction: Diagnostic and Prognostic Value. Part 2 (Literature Review). Journal of Clinical Practice. 2020; 11(4): 70–82. DOI: 10.17816/clinpract48893.

8. Chaulin A.M., Abashina O.E., Duplyakov D.V. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention. 2021; 20(2): 2590. in Russian. DOI: 10.15829/1728-8800-2021-2590.

9. Lozano-Velasco E., Inácio J.M., Sousa I., et al. miRNAs in Heart Development and Disease. Int J Mol Sci. 2024; 25(3): 1673. DOI: 10.3390/ijms25031673.

10. Mahjoob G., Ahmadi Y., Fatima Rajani H., et al. Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. J Clin Lab Anal. 2022; 36(5): e24380. DOI: 10.1002/jcla.24380.

11. Pérez-Cremades D., Chen J., Assa C., et al. MicroRNA-mediated control of myocardial infarction in diabetes. Trends Cardiovasc Med. 2023; 33(4): 195-201. DOI: 10.1016/j.tcm.2022.01.004.

12. Nappi F., Avtaar Singh S.S., Jitendra V., et al. The Roles of microRNAs in the Cardiovascular System. International Journal of Molecular Sciences. 2023; 24(18): 14277. DOI: 10.3390/ijms241814277.

13. Bostjancic E., Zidar N., Glavac D. MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 2009; 27(6): 255-268. DOI: 10.3233/DMA-2009-0671.

14. Wang K.J., Zhao X., Liu Y.Z., et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction. Cell Physiol. Biochem. 2016; 38(3): 1015–1029. DOI: 10.1159/000443053.

15. Singh G.B., Cowan D.B., Wang D.Z. Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Front Oncol. 2020; 10: 598964. DOI: 10.3389/fonc.2020.598964.

16. Huang X., Wang J. miR-1 Mediated AMPK Pathway on Cardiomyocyte Apoptosis in Hypertensive Rats. Cell Mol Biol (Noisy-le-grand). 2022; 68(7): 135-140. DOI: 10.14715/cmb/2022.68.7.22.

17. Cheng Y., Tan N., Yang J., et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 2010; 119(2): 87-95. DOI: 10.1042/CS20090645.

18. Ai J., Zhang R., Li Y., et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010; 391(1): 73-77. DOI: 10.1016/j.bbrc.2009.11.005.

19. Yu Y., Liu H., Yang D., et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression. Pharmacol Res. 2019; 146: 104315. DOI: 10.1016/j.phrs.2019.104315.

20. Wang G.K., Zhu J.Q., Zhang J.T., et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010; 31(6): 659-666. DOI: 10.1093/eurheartj/ehq013.

21. D'Alessandra Y., Devanna P., Limana F., et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010; 31(22): 2765-2773. DOI: 10.1093/eurheartj/ehq167.

22. Widera C., Gupta S.K., Lorenzen J.M., et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011; 51(5): 872-875. DOI: 10.1016/j.yjmcc.2011.07.011.

23. Zhao X., Wang Y., Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract. 2020; 160: 108004. DOI: 10.1016/j.diabres.2020.108004.

24. Huang X.H., Li J.L., Li X.Y., et al. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med. 2021; 8: 773314. DOI: 10.3389/fcvm.2021.773314.

25. Liu C., Zheng H., Xie L., et al. Decreased miR-208 induced ischemia myocardial and reperfusion injury by targeting p21. Pharmazie. 2016; 71(12): 719-723. DOI: 10.1691/ph.2016.6740.

26. Zampetaki A., Willeit P., Tilling L., et al. Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. Journal of the American College of Cardiology. 2012; 60 (4): 290-299. DOI: 10.1016/j.jacc.2012.03.056.

27. Bonauer A., Carmona G., Iwasaki M., et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009; 324(5935): 1710-1713. DOI: 10.1126/science.1174381.

28. Loyer X., Potteaux S., Vion A.C., et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014; 114(3): 434-443. DOI: 10.1161/CIRCRESAHA.114.302213.

29. Liu G., Friggeri A., Yang Y., et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A. 2009; 106(37): 15819-15824. DOI: 10.1073/pnas.0901216106.

30. Son D.J., Kumar S., Takabe W., et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013; 4: 3000. DOI: 10.1038/ncomms4000.

31. Du F., Yu F., Wang Y., et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014; 34(4): 759-767. DOI: 10.1161/ATVBAHA.113.302701.

32. Tabet F., Vickers K.C., Cuesta Torres L.F., et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun. 2014; 5: 3292. DOI: 10.1038/ncomms4292.

33. Wei Y., Zhu M., Corbalán-Campos J., et al. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol. 2015; 35(4): 796-803. DOI: 10.1161/ATVBAHA.114.304723.

34. Rayner K.J., Suárez Y., Dávalos A., et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010; 328(5985): 1570-1573. DOI: 10.1126/science.1189862.

35. Li Y.Q., Zhang M.F., Wen H.Y., et al. Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (Sao Paulo). 2013; 68(1): 75-80. DOI: 10.6061/clinics/2013(01)oa12.

36. Gidlöf O., Andersson P., van der Pals J., et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology. 2011; 118(4): 217-226. DOI: 10.1159/000328869.

37. Jayawardena E., Medzikovic L., Ruffenach G., et al. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci. 2022; 23(3): 1512. DOI: 10.3390/ijms23031512.

38. Li Y., Lu J., Bao X., et al. MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4. Oncotarget. 2016; 7(24): 35607-35617. DOI: 10.18632/oncotarget.9597.

39. Zhang Z., Qiao G., Sun Z., et al. Expression of miR-223-3p in a rat model of myocardial infarction and the effects of miR-223-3p on cardiomyocytes. All Life. 2020; 13(1): 407–415. DOI: 10.1080/26895293.2020.1796827.

40. Balzano F., Deiana M., Dei Giudici S., et al. miRNA Stability in Frozen Plasma Samples. Molecules. 2015; 20(10): 19030-19040. DOI: 10.3390/molecules201019030.


Review

For citations:


Petrova М.М., Shnayder N.A., Dmitrenko D.V., Petrov A.V., Kaskaevа D.S., Evsyukov A.A. The pattern of circulating micrornas in acute myocardial infarction. Transbaikalian Medical Bulletin. 2025;(2):140-151. (In Russ.) https://doi.org/10.52485/19986173_2025_2_140

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)