Preview

Transbaikalian Medical Bulletin

Advanced search

THE ROLE OF MYOKINES IN IMPROVING COGNITIVE FUNCTION

https://doi.org/10.52485/19986173_2024_4_126

Abstract

Over the past couple of decades, it has become apparent that skeletal muscles work as an endocrine organ that can produce and secrete myokines that exert their effects in an endocrine, paracrine, or autocrine manner. Modern research shows that physical exertion induces the synthesis of molecules involved in the transmission of signals between skeletal muscle cells and other organs, in particular the brain, adipose tissue, organs of the gastrointestinal tract, as well as skin and vascular cells. This review examines the myokines that cause communication with the brain, neuroprotection in response to physical activity and related processes. Unlike exercise-induced protective myokines and related signaling pathways, physical inactivity and muscle wasting can disrupt the expression and secretion of myokines and, in turn, disrupt the function of the central nervous system. It is assumed that adapting the transmission of signals from muscles to the brain by modulating myokines will help combat age-related neurodegeneration and brain diseases affected by systemic signals.

About the Authors

A. I. Petrova
Chita state medical academy
Russian Federation

Petrova A.I., Candidate of Medical Sciences, assistant of the Department of Pediatrics

AuthorID: 963027,
Scopus AuthorID: 57201847102

39а Gorky St., Chita, Russia, 672000



A. V. Markovskiy
Chita state medical academy
Russian Federation

Markovskiy A.V., Candidate of Medical Sciences, assistant of the Department of Pathological Physiology

AuthorID: 824262,
Scopus AuthorID: 57454161000

39а Gorky St., Chita, Russia, 672000



N. I. Potapova
Chita state medical academy
Russian Federation

Potapova N.L., Doctor of Medical Sciences, docent, Head of the Department of Polyclinic Pediatrics with a course of medical rehabilitation

AuthorID: 639640,
Scopus AuthorID: 57216661611

39а Gorky St., Chita, Russia, 672000



Yu I. Mizernitskiy
Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University
Russian Federation

Mizernitskiy Yu.L., Doctor of Medical Sciences, Professor, Head of the Department of Chronic, Inflammatory and Allergic Diseases lung diseases of Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery and Professor of the Department of Innovative Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University

AuthorID: 963027,
Scopus AuthorID: 57201847102

2, Taldomskaya St., Moscow, Russia, 125412



References

1. Rai M., Demontis F. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites. Annu Rev Physiol. 2016. 78:85-107. DOI: 10.1146/annurev-physiol-021115-105305.

2. Gomarasca M., Banfi G., Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem. 2020. 94:155-218. DOI: 10.1016/bs.acc.2019.07.010.

3. Rai M., Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast. 2022. Oct 21. 8(1):43-63. DOI: 10.3233/BPL-210133.

4. Isaac A.R., Lima-Filho R.A.S., Lourenco M.V. How does the skeletal muscle communicate with the brain in healthanddisease?Neuropharmacology.2021.Oct1.197:108744.DOI:10.1016/j.neuropharm.2021.108744.

5. Qi J.Y., Yang L.K., Wang X.S. et al. Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Res Bull. 2022. Oct 1. 188:11-20. DOI: 10.1016/j.brainresbull.2022.07.007.

6. Langan S.P., Grosicki G.J. Exercise Is Medicine…and the Dose Matters. Front Physiol. 2021. May 12. 12:660818. DOI: 10.3389/fphys.2021.660818.

7. Atakan M.M., Li Y., Koşar Ş.N., Turnagöl H.H., Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int J Environ Res Public Health. 2021. Jul 5. 18(13):7201. DOI: 10.3390/ijerph18137201.

8. Augusto-Oliveira M., Arrifano G.P., Leal-Nazaré C.G. et al. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol. 2023. Dec. 60(12):6950-6974. DOI: 10.1007/s12035-023-03492-8.

9. Mela V., Mota B.C., Milner M. et al. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav Immun. 2020. Jul. 87:413-428. DOI: 10.1016/j.bbi.2020.01.012.

10. Pahlavani H.A. Exercise therapy to prevent and treat Alzheimer’s disease. Front Aging Neurosci. 2023. Aug. 4.15:1243869. DOI: 10.3389/fnagi.2023.1243869.

11. Pataky M.W., Nair K.S. Too much of a good thing: Excess exercise can harm mitochondria. Cell Metab. 2021. May 4. 33(5):847-848. DOI: 10.1016/j.cmet.2021.04.008.

12. Rosa E.F., Takahashi S., Aboulafia J., Nouailhetas V.L., Oliveira M.G. Oxidative stress induced by intense and exhaustive exercise impairs murine cognitive function. J Neurophysiol. 2007. Sep. 98(3):1820-6. DOI: 10.1152/jn.01158.2006.

13. Li Y., Tian X., Luo J. et al. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal. 2024. May 24. 22(1):285. DOI: 10.1186/s12964-024-01663-1.

14. Driss L.B., Lian J., Walker R.G. et al. GDF11 and aging biology - controversies resolved and pending. J Cardiovasc Aging. 2023. Oct. 3(4):42. DOI: 10.20517/jca.2023.23.

15. Sa-Nguanmoo P., Tanajak P., Kerdphoo S. et al. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav. 2016. Sep. 85:86-95. DOI: 10.1016/j.yhbeh.2016.08.006.

16. Rai M., Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast. 2022. Oct 21. 8(1):43-63. DOI: 10.3233/BPL-210133.

17. Mancinelli R., Checcaglini F., Coscia F. et al. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci. 2021. Aug 7. 22(16):8520. DOI: 10.3390/ijms22168520.

18. Stansberry W.M., Pierchala B.A. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci. 2023. Aug 24. 16:1238453. DOI: 10.3389/fnmol.2023.1238453.

19. Numakawa T., Odaka H., Adachi N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci. 2018. Nov 19. 19(11):3650. DOI: 10.3390/ijms19113650.

20. Arévalo J.C., Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules. 2023. May 2. 13(5):789. DOI: 10.3390/biom13050789.

21. Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules. 2024. Apr 30. 14(5):539. DOI: 10.3390/biom14050539.

22. Leger C., Quirié A., Méloux A. et al. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int J Mol Sci. 2024. Jan 19. 25(2):1213. DOI: 10.3390/ijms25021213.

23. Colucci-D'Amato L., Speranza L., Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci. 2020. Oct 21. 21(20):7777. DOI: 10.3390/ijms21207777.

24. Begni V., Riva M.A., Cattaneo A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin Sci (Lond). 2017. Jan 1. 131(2):123-138. DOI: 10.1042/CS20160009.

25. Loprinzi P.D., Day S., Deming R. Acute Exercise Intensity and Memory Function: Evaluation of the Transient Hypofrontality Hypothesis. Medicina (Kaunas). 2019. Aug 7. 55(8):445. DOI: 10.3390/medicina55080445.

26. von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. Adv Neurobiol. 2023. 34:223- 254. DOI: 10.1007/978-3-031-36159-3_5.

27. de Assis G.G., de Almondes K.M. Exercise-dependent BDNF as a Modulatory Factor for the Executive Processing of Individuals in Course of Cognitive Decline. A Systematic Review. Front Psychol. 2017. Apr 19. 8:584. DOI: 10.3389/fpsyg.2017.00584.

28. Rosenbaum S., Lagopoulos J., Curtis J. et al. Aerobic exercise intervention in young people with schizophrenia spectrum disorders; improved fitness with no change in hippocampal volume. Psychiatry Res. 2015. May 30. 232(2):200-1. DOI: 10.1016/j.pscychresns.2015.02.004.

29. Moon H.Y., Becke A., Berron D. et al. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016. Aug 9. 24(2):332-40. DOI: 10.1016/j.cmet.2016.05.025.

30. Boström P., Wu J., Jedrychowski M.P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012. Jan 1. 481(7382):463-8. DOI: 10.1038/nature10777.

31. Siteneski A., Cunha M.P., Lieberknecht V. et al. Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice. Prog Neuropsychopharmacol Biol Psychiatry. 2018. Jun 8. 84(Pt A):294-303. DOI: 10.1016/j.pnpbp.2018.03.004.

32. Xu M., Zhu J., Liu X.D., Luo M.Y., Xu N.J. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener. 2021. Aug 13. 10(1):30. DOI: 10.1186/s40035-021-00254-1.

33. Pignataro P., Dicarlo M., Zerlotin R. et al. FNDC5/Irisin System in Neuroinflammation and Neurodegenerative Diseases: Update and Novel Perspective. Int J Mol Sci. 2021. Feb 5. 22(4):1605. DOI: 10.3390/ijms22041605.

34. Dong Y., Yuan H., Ma G., Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci. 2024. Jul 27. 81(1):310. DOI: 10.1007/s00018-024-05331-y.

35. Zhang J., Tian Z., Qin C., Momeni M.R. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell. 2024. Jul. 37(4):887-903. DOI: 10.1007/s13577-024-01057-y.

36. Walzik D., Wences Chirino T.Y., Zimmer P., Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther. 2024. May 29. 9(1):138. DOI: 10.1038/s41392-024-01841-0.

37. Marinus N., Hansen D., Feys P. et al. The Impact of Different Types of Exercise Training on Peripheral Blood Brain-Derived Neurotrophic Factor Concentrations in Older Adults: A Meta-Analysis. Sports Med. 2019. Oct. 49(10):1529-1546. DOI: 10.1007/s40279-019-01148-z.

38. Delezie J., Weihrauch M., Maier G. et al. BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc Natl Acad Sci U S A. 2019. Aug 6. 116(32):16111-16120. DOI: 10.1073/pnas.1900544116.

39. Cefis M., Chaney R., Wirtz J. et al. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci. 2023. Oct 5. 16:1275924. DOI: 10.3389/fnmol.2023.1275924.


Review

For citations:


Petrova A.I., Markovskiy A.V., Potapova N.I., Mizernitskiy Yu.I. THE ROLE OF MYOKINES IN IMPROVING COGNITIVE FUNCTION. Transbaikalian Medical Bulletin. 2024;(4):126-132. (In Russ.) https://doi.org/10.52485/19986173_2024_4_126

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)