Biomarkers of heart failure in patients with type 2 diabetes mellitus: clinical comparisons and impact of hypoglycemic therapy
https://doi.org/10.52485/19986173_2025_1_154
Abstract
The main cause of increased mortality in patients with type 2 diabetes mellitus (DM2) is heart failure (HF). HF leads to an increase in the number of hospitalizations, a deterioration in the quality of life and prognosis. As the incidence of HF in DM2 is constantly increasing, there is increased interest in optimal diagnostic and prognostic algorithms using a panel of circulating biomarkers to ensure timely diagnosis, improve disease treatment and patient prognosis. As the number of new HF biomarkers is growing rapidly, this review outlines the most promising and accessible biomarkers associated with fibrosis, a key pathophysiological mechanism of HF, and describes their usefulness for the diagnosis, risk stratification, and screening of HF in DM2, as well as existing limitations.
About the Authors
I. V. DrukRussian Federation
Inna V. Druk - Doctor of Medical Sciences, Associate Professor, Head of the Department of Internal Medicine and Family Medicine.
12 Lenin St., Omsk, 644099; 41 Lermontov St., Omsk, 644024
S. S. Safronova
Russian Federation
Svetlana S. Safronova - Assistant of the Department of Internal Medicine and Family Medicine.
12 Lenin St., Omsk, 644099; 41 Lermontov St., Omsk, 644024
O. Yu. Korennova
Russian Federation
Olga Yu. Korennova - Doctor of Medical Sciences, Professor, Professor of the Department of Internal Medicine and Family Medicine.
12 Lenin St., Omsk, 644099; 41 Lermontov St., Omsk, 644024
O. I. Kanunnikova
Russian Federation
Olesya I. Kanunnikova - Associate Professor of the Department of Internal Medicine and Family Medicine.
12 Lenin St., Omsk, 644099; 41 Lermontov St., Omsk, 644024
A. S. Kazachenko
Russian Federation
Anna S. Kazachenko - 6th-year student of the Faculty of Medicine.
12 Lenin St., Omsk, 644099; 41 Lermontov St., Omsk, 644024
References
1. Park J.J. Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure in Diabetes. Diabetes Metab J. 2021 Mar;45(2):146-157. doi: 10.4093/dmj.2020.0282.
2. Druk IV, Nechaeva GI. Type 2 diabetes mellitus for cardiologists. Ed. by MN Mamedov. Moscow: MIA, 2017, 208 p.
3. Mamedov M.N., Druk I.V., Kashtalap V.V., et al. Prediabetes: diagnosis, treatment and prevention. Moscow: Cardioprogress, 2024. 186 p. ISBN 978-5-6040456-2-6.
4. Mamedov M.N., Druk I.V., Arabidze G.G., et al. Macrovascular and microvascular complications of type 2 diabetes mellitus. Preventive Medicine. 2024;27(8):94 100. doi.org:10.17116/profmed20242708194.
5. Arabidze G.G., Mamedov M.N., Konstantinov V.O., et al. Management of patients with hypertriglyceridemia. Focus on diabetes mellitus. International Journal of Heart and Vascular Diseases. 2024;12(42.1):6-44. DOI: 10.24412/2311-1623-2024-42S1-6-44.
6. Dedov I.I., Shestakova M.V., Vikulova O.K., et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010 - 2022. Diabetes mellitus. 2023;26(2):104-123.
7. Birkeland K.I., Bodegard J., Eriksson J.W. et al. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study. Diabetes Obes Metab. 2020 Sep;22(9):1607-1618. doi: 10.1111/dom.14074.
8. Drapkina O.M., Kontsevaya A.V., Kalinina A.M., et al. Comorbidity of patients with chronic non-communicable diseases in the practice of a general practitioner. Eurasian Guidelines. Cardiovascular Therapy and Prevention. 2024; 23 (3): 3996. doi: 10.15829/1728-8800-2024-3996.
9. Galyavich A.S., Tereshchenko S.N., Uskach T.M, et al. Chronic heart failure. Clinical guidelines 2024. Russian journal of cardiology. 2024; 29 (11): 6162. doi: 10.15829/1560-4071-2024-6162.
10. Singh S., Pandey A., Neeland I.J. Diagnostic and prognostic considerations for use of natriuretic peptides in obese patients with heart failure. Prog Cardiovasc Dis. 2020 Sep-Oct;63(5):649-655. doi: 10.1016/j.pcad.2020.09.006.
11. Oremek G.M., Passek K., Holzgreve F., et al. Die Biomarker BNP und NT proBNP [The biomarkers BNP and NT-proBNP]. Zentralbl Arbeitsmed Arbeitsschutz Ergon. 2023;73(2):89-95. German. doi:10.1007/s40664-022-00491-9.
12. Magnussen C., Blankenberg S. Biomarkers for heart failure: small molecules with high clinical relevance. J Intern Med. 2018 Jun;283(6):530-543. doi: 10.1111/joim.12756.
13. Lugnier C., Meyer A., Charloux A., et al. The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. J Clin Med. 2019;8(10):1746. doi:10.3390/jcm8101746.
14. Oremek G.M., Passek K., Holzgreve F., et al. Die Biomarker BNP und NT proBNP [The biomarkers BNP and NT-proBNP]. Zentralbl Arbeitsmed Arbeitsschutz Ergon. 2023;73(2):89-95. German. doi:10.1007/s40664-022-00491-9.
15. Ullah W., Ahmad A., Sattar Y., et al. Importance of Basal Metabolic Index in the Diagnosis of Heart Failure With B-Type Natriuretic Peptide. Cardiol Res. 2019 Aug;10(4):211-215. doi: 10.14740/cr898.
16. Chang P., Zhang X., Zhang J., et al. BNP protects against diabetic cardiomyopathy by promoting Opa1-mediated mitochondrial fusion via activating the PKG-STAT3 pathway. Redox Biol. 2023 Jun;62:102702. doi: 10.1016/j.redox.2023.102702.
17. Ianoș R.D., Cozma A., Lucaciu R.L., et al. Role of Circulating Biomarkers in Diabetic Cardiomyopathy. Biomedicines. 2024, 23;12(9):2153. doi: 10.3390/biomedicines1209215.
18. Gouda P., Liu Y., Butler J., et al. Relationship between NT-proBNP, echocardiographic abnormalities and functional status in patients with subclinical siabetic cardiomyopathy. Cardiovasc Diabetol. 2024 Aug 2;23(1):281. doi: 10.1186/s12933-024-02378-w.
19. Ibrahim N.E., Januzzi J.L. Sodium-Glucose Co-Transporter 2 Inhibitors and Insights from Biomarker Measurement in Heart Failure Patients. Clin Chem. 2021 Jan 8;67(1):79-86. doi: 10.1093/clinchem/hvaa277.
20. Simeone P., Tripaldi R., Michelsen A., et al. Effects of liraglutide vs. lifestyle changes on soluble suppression of tumorigenesis-2 (sST2) and galectin-3 in obese subjects with prediabetes or type 2 diabetes after comparable weight loss. Cardiovasc Diabetol. 2022 Mar 11;21(1):36. doi: 10.1186/s12933-022-01469-w.
21. Vaduganathan M., Sattar N., Xu J., et al. Stress Cardiac Biomarkers, Cardiovascular and Renal Outcomes, and Response to Canagliflozin. J Am Coll Cardiol. 2022 Feb 8;79(5):432-444. doi: 10.1016/j.jacc.2021.11.027.
22. Lebedev D.A., Babenko A.Y. Effect of dapagliflozin on markers of fibrosis and inflammation in patients with type 2 diabetes mellitus and very high risk of cardiovascular events. RMJ. Medical Review. 2021;5(4):185-188. doi: 10.32364/2587-6821-2021-5-4-185-188.
23. Khan S., Rasool S.T. Current Use of Cardiac Biomarkers in Various Heart Conditions. Endocr Metab Immune Disord Drug Targets. 2021;21(6):980-993. doi:10.2174/.
24. Lotierzo M., Dupuy A.M., Kalmanovich E., et al. sST2 as a value-added biomarker in heart failure. Clin Chim Acta. 2020 Feb;501:120-130. doi: 10.1016/j.cca.2019.10.029.
25. Rabkin S.W., Tang J.K.K. The utility of growth differentiation factor-15, galectin-3, and sST2 as biomarkers for the diagnosis of heart failure with preserved ejection fraction and compared to heart failure with reduced ejection fraction: a systematic review. Heart Fail Rev. 2021 Jul;26(4):799-812. doi:10.1007/s10741-020-09913-3.
26. Altara R., Ghali R., Mallat Z., et al. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc. Res. 2018;114:1578–1594. doi:10.1093/cvr/cvy166.
27. Kamardinov D.Kh., Songurov R.N., Ioshina V.I., et al. Soluble ST2 – as a biomarker, risk stratification tool and therapeutic target in patients with chronic heart failure. Cardiology. 2020;60(2):111–121. doi:10.18087/cardio.2020.2.n816.
28. Zhang T., Xu C., Zhao R., et al. Diagnostic value of sST2 in cardiovascular diseases: a systematic review and meta-analysis. Frontiers in Cardiovascular Medicine. 2021;8, article 697837 doi: 10.3389/fcvm.2021.697837.
29. Lotierzo M., Dupuy A.M., Kalmanovich E., et al. sST2 as a value-added biomarker in heart failure. Clin Chim Acta. 2020 Feb;501:120-130. doi: 10.1016/j.cca.2019.10.029.
30. Yu Song, Fuhai Li, Yamei Xu, et al. Prognostic value of sST2 in patients with heart failure with reduced, mid-range and preserved ejection fraction. International Journal of Cardiology (2020), doi:10.1016/j.ijcard.2020.01.039.
31. Demyanets S., Kaun C., Kaider A., et al. The pro-inflammatory marker soluble suppression of tumorigenicity-2 (ST2) is reduced especially in diabetic morbidly obese patients undergoing bariatric surgery. Cardiovasc Diabetol. 2020 Feb 26;19(1):26. doi: 10.1186/s12933-020-01001-y.
32. Simeone P., Tripaldi R., Michelsen A., et al. Effects of liraglutide vs. lifestyle changes on soluble suppression of tumorigenesis-2 (sST2) and galectin-3 in obese subjects with prediabetes or type 2 diabetes after comparable weight loss. Cardiovasc Diabetol. 2022 Mar 11;21(1):36. doi: 10.1186/s12933-022-01469-w.
33. Berezin A.E. Prognostication of clinical outcomes in diabetes mellitus: Emerging role of cardiac biomarkers. Diabetes Metab Syndr. 2019 Mar-Apr;13(2):995-1003. doi: 10.1016/j.dsx.2019.01.018.
34. Singh H., Khadanga S., Goel S.K., et al. Evaluation of interleukin-33 & sST2 levels in type-2 diabetic mellitus patients with or without metabolic syndrome. Indian J Med Res. 2023 May;157(5):470-476. doi: 10.4103/ijmr.IJMR_1444_19.
35. Li M., Duan L., Cai Y., et al. Prognostic value of soluble suppression of tumorigenesis-2 (SST2) for cardiovascular events in coronary artery disease patients with and without diabetes mellitus. Cardiovasc Diabetol. 2021;20:49. doi: 10.1186/s12933-021-01244-3.
36. Sabbatinelli J., Giuliani A., Bonfigli A.R., et al. Prognostic value of soluble ST2, high-sensitivity cardiac troponin, and NT-proBNP in type 2 diabetes: a 15-year retrospective study. Cardiovasc Diabetol. 2022 Sep 10;21(1):180. doi: 10.1186/s12933-022-01616-3.
37. Hammer F., Genser B., Dieplinger B., et al. Soluble suppression of tumorigenesis-2 is a strong predictor of all-cause, cardiovascular and infection-related mortality risk in haemodialysis patients with diabetes mellitus. Clin Kidney J. 2022 May 18;15(10):1915-1923. doi: 10.1093/ckj/sfac142.
38. Fousteris E., Melidonis A., Panoutsopoulos G., et al. Toll/interleukin-1 receptor member ST2 exhibits higher soluble levels in type 2 diabetes, especially when accompanied with left ventricular diastolic dysfunction. Cardiovasc Diabetol. 2011;10:101. doi:10.1186/1475-2840-10-101.
39. Iyer N.R., Chan S.P., Liew O.W., et al. ATTRaCT investigators. Global longitudinal strain and plasma biomarkers for prognosis in heart failure complicated by diabetes: a prospective observational study. BMC Cardiovasc Disord. 2024 Mar 5;24(1):141. doi: 10.1186/s12872-024-03810-5.
40. Pascual-Figal D.A., Bayes-Genis A., Asensio-Lopez M.C., et al. The Interleukin-1 Axis and Risk of Death in Patients With Acutely Decompensated Heart Failure. J Am Coll Cardiol. 2019 Mar 12;73(9):1016-1025. doi: 10.1016/j.jacc.2018.11.054.
41. Kosum P., Siranart N., Mattanapojanat N., et al. GDF-15: a novel biomarker of heart failure predicts short-term and long-term heart failure rehospitalization and short-term mortality in patients with acute heart failure syndrome. BMC Cardiovasc Disord. 2024 Mar 12;24(1):151. doi: 10.1186/s12872-024-03802-5.
42. Kuzheleva E.A., Garganeeva A.A., Aleksandrenko V.A. et al. Associations of growth differentiation factor 15 with clinical features of chronic heart failure with intermediate and preserved ejection fraction depending on the history of myocardial infarction. Cardiology. 2021;61(5):59-64. doi: 10.18087/cardio.2021.5.n1449.
43. Drapkina O.M., Palatkina L.O. Markers of cytokine activation and oxidative stress in patients with chronic heart failure. Heart Failure. 2013; 14(6): 341-6. doi:10.20514/2226-6704-2023-13-1-14-23.
44. Sivolap V.D., Zemlyaniy Ya.V. Prognostic value of GDF 15 and NTproBNP levels and echocardiographic parameters in patients with heart failure with preserved ejection fraction and asymptomatic diastolic dysfunction who suffered myocardial infarction against the background of arterial hypertension. Zaporizhzhya Medical Journal. 2014;3(84):13–17.
45. Gizatulina T.P., Martyanova L.U., Petelina T.I. et al. Growth differentiation factor-15 as an integral marker of clinical and functional status of a patient with non-valvular atrial fibrillation. Bulletin of Arrhythmology. 2020;27(3):25-33. doi:10.35336/VA-2020-3-25-3.
46. Bradley J., Schelbert E.B., Bonnett L.J., et al. Growth differentiation factor-15 in patients with or at risk of heart failure but before first hospitalization. Heart. 2024 Jan 10;110(3):195-201. doi: 10.1136/heartjnl-2023-322857.
47. Echouffo-Tcheugui J.B., Daya N., Ndumele C.E., et al. Diabetes, GDF-15 and incident heart failure: the atherosclerosis risk in communities study. Diabetologia. 2022 Jun;65(6):955-963. doi: 10.1007/s00125-022-05678-6.
48. Tsai V., Zhang H., Manandhar R. et al. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity. Int. J. Obes. 2018;42:561–571. doi: 10.1038/ijo.2017.258.
49. Coll A.P., Chen M., Taskar P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature.2020;578:444–448. doi: 10.1038/s41586-019-1911-y.
50. Gerstein H.C., Pare G., Hess S., et al. Growth Differentiation Factor 15 as a Novel Biomarker for Metformin. Diabetes Care. 2017;40:280–283. doi: 10.2337/dc16-1682.
51. Echouffo-Tcheugui J.B., Daya N., Ndumele C.E., et al. Diabetes, GDF-15 and incident heart failure: the atherosclerosis risk in communities study. Diabetologia. 2022 Jun;65(6):955-963. doi: 10.1007/s00125-022-05678-6.
52. Xie S., Li Q., Luk A.O.Y., et al. Major Adverse Cardiovascular Events and Mortality Prediction by Circulating GDF-15 in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Biomolecules. 2022 Jul 4;12(7):934. doi: 10.3390/biom12070934.
53. Hara A., Niwa M., Kanayama T., et al. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules. 2020 Sep 4;10(9):1277. doi: 10.3390/biom10091277.
54. Khadeja Bi A., Santhosh V., Sigamani K. Levels of Galectin-3 in Chronic Heart Failure: A Case-Control Study. Cureus. 2022 Aug 23;14(8):e28310. doi: 10.7759/cureus.28310.
55. Lebedev D.A., Lyasnikova E.A., Vasilyeva E.Y., et al. Association between markers of fibrosis and heart failure incidence in patients with type 2 diabetes mellitus. J Diabetes Res. 2021;2021:9589185. doi: 10.1155/2021/9589185.
56. Deng J., Yan F., Tian J., et al. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr. 2023 Mar 4;15(1):35. doi: 10.1186/s13098-023-00998-y.
57. Hao W.R., Cheng C.H., Liu J.C., et al. Understanding Galectin-3's Role in Diastolic Dysfunction: A Contemporary Perspective. Life (Basel). 2024 Jul 20;14(7):906. doi: 10.3390/life14070906.
58. Lebedev D.A., Lyasnikova E.A., Vasilyeva EY, et al. Type 2 Diabetes Mellitus and Chronic Heart Failure with Midrange and Preserved Ejection Fraction: A Focus on Serum Biomarkers of Fibrosis. J Diabetes Res. 2020 Nov 7;2020:6976153. doi: 10.1155/2020/6976153.
59. Li Y., Li T., Zhou Z., et al. Emerging roles of Galectin-3 in diabetes and diabetes complications: A snapshot. Rev Endocr Metab Disord. 2022 Jun;23(3):569-577. doi: 10.1007/s11154-021-09704-7.
60. Sun Z., Wang Z., Li L., et al. RAGE/galectin-3 yields intraplaque calcification transformation via sortilin. Acta Diabetol. 2019;56:457–472. doi: 10.1007/s00592-018-1273-1.
61. Tan K.C.B., Cheung C.L., Lee A.C.H., et al.. Galectin-3 and risk of cardiovascular events and all-cause mortality in type 2 diabetes. Diabetes Metab. Res. Rev. 2019;35:e3093. doi: 10.1002/dmrr.3093.
62. Flores-Ramírez R., Azpiri-López J.R., González-González J.G., et al. Global longitudinal strain as a biomarker in diabetic cardiomyopathy. A comparative study with Gal-3 in patients with preserved ejection fraction. Arch. Cardiol. Mex. 2017;87:278–285. doi: 10.1016/j.acmx.2016.06.002.
63. Seferovic J.P., Lalic N.M., Floridi F., et al. Structural myocardial alterations in diabetes and hypertension: the role of galectin-3. Clin Chem Lab Med. 2014;52:1499–1505. doi: 10.1515/cclm-2014-0265.
64. Holmager P., Egstrup M., Gustafsson I., et al. Galectin-3 and fibulin-1 in systolic heart failure-relation to glucose metabolism and left ventricular contractile reserve. BMC Cardiovasc. Discord. 2017;17:22. doi:10.1186/s12872-016-0437-6.
65. Nguyen M.N., Ziemann M., Kiriazis H., et al. Galectin-3 deficiency ameliorates fibrosis and remodeling in dilated cardiomyopathy mice with enhanced Mst1 signaling. Am J Physiol Heart Circ Physiol. 2019;316:H45–H60. doi: 10.1152/ajpheart.00609.2018.
66. Zhu N., Zhu L., Huang B., et al. Galectin-3 inhibition ameliorates streptozotocin-induced diabetic cardiomyopathy in mice. Front Cardiovasc Med. 2022;9:868372. doi: 10.3389/fcvm.2022.868372.
67. Nikolov A., Popovski N. Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites. 2022 Mar 28;12(4):297. doi: 10.3390/metabo12040297.
68. Levick S.P., Widiapradja A. The diabetic cardiac fibroblast: mechanisms underlying phenotype and function. International Journal of Molecular Sciences. 2020;21(3):p. 970. doi: 10.3390/ijms21030970.
69. Pan K.L., Hsu Y.C., Chang S.T., et al. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int J Mol Sci. 2023 May 11;24(10):8604. doi: 10.3390/ijms24108604.
70. Raafs A.G., Verdonschot J.A.J., Henkens M.T.H.M., et al. The combination of carboxy-terminal propeptide of procollagen type I blood levels and late gadolinium enhancement at cardiac magnetic resonance provides additional prognostic information in idiopathic dilated cardiomyopathy – A multilevel assessment of myocardial fibrosis in dilated cardiomyopathy. Eur J Heart Fail. 2021 Jun; 23 (6): 933–944. doi: 10.1002/ejhf.2201.
71. Ponomareva O.V., Smirnova E.A. Modern view on the role of myocardial fibrosis and its biochemical markers in the diagnosis of chronic heart failure. Science of the Young (Eruditio Juvenium). 2024.12.2: 303–316. doi:10.23888/HMJ2024122303-316.
Supplementary files
Review
For citations:
Druk I.V., Safronova S.S., Korennova O.Yu., Kanunnikova O.I., Kazachenko A.S. Biomarkers of heart failure in patients with type 2 diabetes mellitus: clinical comparisons and impact of hypoglycemic therapy. Transbaikalian Medical Bulletin. 2025;(1):154-170. (In Russ.) https://doi.org/10.52485/19986173_2025_1_154