Hormonal regulation of neurogenesis
https://doi.org/10.52485/19986173_2025_1_195
Abstract
The key process for studying neuroplasticity is neurogenesis and the participation of hormones in it. The purpose of this review is to analyze the latest data obtained by researchers in this field and to form a general understanding of the molecular mechanisms of the action of hormones on the stages of neurogenesis. The literature was studied, including scientific domestic and foreign publications that were prepared mainly over the past five years.
The research methods were the analysis of primary sources and scientific results obtained by other authors. The use of comparative analysis made it possible to study and compare the types of action of hormones depending on the place of their synthesis. The use of the systemic-structural method made it possible to formulate the author’s diagram reflecting the influence of hormones on neurogenesis.
The review examines the influence of hormones on neurogenesis. It has been established that a decrease in the concentration of hormones or disruption of their metabolism can cause the development of pathological conditions. The similarities between neural and vascular networks in the mechanisms of their growth and development have been revealed.
The conclusion is formulated about the need to study the mechanisms of the relationship between neurogenesis and angiogenesis in order to identify new molecules that regulate the activity of proneurogenic or proangiogenic cells.
About the Authors
E. A. TeplyashinaRussian Federation
Elena A. Teplyashina - Candidate of Biological Sciences, Associate Professor, Associate Professor of the Department of Chemistry with a course in Medical, Pharmaceutical and Toxicological Chemistry, Senior Researcher at the Research Institute of Molecular Medicine and Pathobiochemistry.
1 Partizan Zheleznyak St., Krasnoyarsk, 660022
Researcher ID AAN-8547-2020; Author ID РИНЦ 96478; Author ID Scopus 56880351500
N. A. Malinovskaya
Russian Federation
Natalia A Malinovskaya - Doctor of Medical Sciences, Head of the Department of Chemistry with a course in Medical, Pharmaceutical and Toxicological Chemistry, Senior Researcher at the Research Institute of Molecular Medicine and Pathobiochemistry.
1 Partizan Zheleznyak St., Krasnoyarsk, 660022
Researcher ID AAN-4918-2020; Author ID РИНЦ 603088; Author ID Scopus 16175595000
V. Yu. Endrzheevskaya-Shurygina
Russian Federation
Victoria Yu. Endrzheevskaya-Shurygina - Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry with a course in Medical, Pharmaceutical and Toxicological Chemistry.
1 Partizan Zheleznyak St., Krasnoyarsk, 660022
ResearcherID AAN-5687-2020; Author ID РИНЦ 701303; Author ID Scopus 57201744515
References
1. Owji S., Shoja M.M. The History of Discovery of Adult Neurogenesis. Clin Anat. 2020. 33(1). 41-55. doi: 10.1002/ca.23447.
2. Respondek M., Buszman E. Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals’ brain. Advances in Hygiene and Experimental Medicine. 2015. 69. 1451-1461.
3. Wan L., Huang R.-J., Luo Z.-H., et al. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast. 2021. 3651735. doi: 10.1155/2021/3651735.
4. Hussain G., Akram R., Anwar H., et al. Adult neurogenesis: a real hope or a delusion? Neural Regen Res. 2024. 19(1). 6-15. doi: 10.4103/1673-5374.375317.
5. Jorgensen C., Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules. 2020. 10(8). 1151. doi: 10.3390/biom10081151.
6. Camacho-Arroyo I., Pina-Medina A.G., Bello-Alvares C., et al. Sex Hormones and Proteins Involved in Brain Plasticity. Vitam. Horm. 2020. 114. 145-165. doi: 10.1016/bs.vh.2020.04.002.
7. Brunne B., Rune G.M. Sex Neurosteroidogenesis and Hippocampal Network Maintenance Network Maintenance. Curr. Opin. Endocr. Metab. Res. 2022. 23. 100316. Doi: 10.1016/j.coemr.2022.100316.
8. Jha N.K., Chen W.C., Kumar S., et al. Molecular mechanism of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biology. 2022. 12(3). https://doi.org/10.1098/rsob.210298.
9. Urban N., Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. 2014. 8. 396.
10. Ridaura I.E., Sorrentino S., Moroni L. Parallels between the developing Vascular and Neural System: Signaling Pathways and Future Perspectives for Regeneration Medicine. Advanced Science. 2021. 8(23). https://doi.org/10.1002/advs.202101837.
11. Morimoto K., Tabata H., Takahashi R., et al. Interactions between neural cells and blood vessels in central nervous system development. BioEssays. 2023. 46(3). https:/doi.org/10.1002/bies.202300091.
12. Marzola P., Melzer T., Pavesi E., et al. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023. 13(12). 1610. Doi: 10.3390/brainsci13121610.
13. Pedrolli F., Banfi B., Gesmundo I., et al. Growth hormone-releasing hormone (GHRH) promotes survival and proliferation of neural stem cells and reduces amyloid-β-induced toxicity. Endocrine Absracts. 2022. 81. doi: 10.1530/endoabs.81.
14. Olivares-Hernandes J.D., Carranza M., Marques J.E. Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci. 2022. 23(16). 9054. doi: 10.3390/ijms23169054.
15. Chung J.-Y., Sunwoo J.-S., Kim M.-W., et al. The neuroprotective effects of human growth hormone as a potential treatment for amyotrophic lateral sclerosis. Neural Regen Res. 2015. 10(8). 1201-1203.
16. Agrawal R., Reno C. M., Sharma S., et al. Insulin action in the brain regulates both central and peripheral functions. Endocrinology and Metabolism. 2021. 321. 156-163. doi: 10.1152/ajpendo.00642.
17. Kundu S., Firdous S.M. Role of Insulin in Brain: An Emphasis on Molecular Functions. Theranostics and Pharmacological Sciences. 2022. 4(2). doi: 10.36922/itps.v4i2.43.
18. Dakic T., Jevdjovic T., Lakic I., et al. The Expression of Insulin in the Central Nervous System: What Have We Learned So Far? Int J Mol Sci. 2023. 24(7). 6586. doi: 10.3390/ijms24076586.
19. Булгакова С.В., Романчук П.И., Тренева Е.В. Инсулин, головной мозг, болезнь Альцгеймера: новые данные. Бюллетень науки и практики. 2020. 6(3). https://doi.org/10.33619/2414-2948/52/10.
20. Viho E.M., Buurstede J.C., Mahfouz A., et al. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology. 2019. 109(3). 266-276. doi: 10.1159/000499659.
21. Wang J., Lu J., Bond M.C., et al. Identification of select glucocorticoids as Smoothe ned agonists: potential utility for regenerative medicine. Proc. Natl. Acad. Sci. U.S.A. 2010. 107. Р. 9323-9328. https://doi.org/10.1073/pnas.0910712107.
22. Meijer O., Buurstede J.C., Shaaf M.J. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cellular and Molecular Neurobiology. 2019. 39. 539-549. doi:10.1007/s10571-018-0625-2.
23. Fan X., Zhao Z., Huang Z., et al. Mineralocorticoid receptor agonist aldosterone rescues hippocampal neural stem cell proliferation defects and improves postoperative cognitive function in aged mice. Word J Biol Psychiatry. 2023. 24(2). 149-161. doi: 10.1080/15622975.2022.2082524.
24. Ahmadpour D., Grange-Messent V. Involvement of Testosterone Signaling in the Integrity of the Neurovascular Unit in the Male: Review of Evidence, Contradictions and Hypothesis. Neuroendocrinology. 2021. 111(5). 403-420.
25. Negan S.S., Hajali V., Moradi H.R., et al. The Impact of Estradiol on Neurogenesis and Cognitive Function in Alzheimer's Disease. Cell Mol Neurobiol. 2020. 40(3). 283-299. doi:10.1007/s10571-019-00733-0.
26. Yagi S., Wen Y., Burrowes B., et al. Estrogens dynamically regulate neurogenesis in the dentate gyrus of adult female rats. BioRxiv. 2024. doi: https://doi.org/10.1101/2022.09.30.51037.
27. Xu Q., Huang S., Guo W. Assotiation between serum estradiol levels and cognitive function in order women: a cross-sectional analyses. Front Aging Neurosci. 2024. 16. 1356791. doi: 10.3389/fnagi.2024.1356791.
28. Arjmand S., Bender D., Jakobsen S. Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules. 2023. 13(9). 1405. doi:10.3390/biom13091405.
29. Jezierski M.K., Sohrabji F. Region- and peptide-specific regulation of the neurotrophins by estrogen. Mol Brain Res. 2000. 85. 75-84.
30. Cefis M., Quirie A., Pernet N., et al. Prigent-Tessier A. Brain-derived neurotrophic factor is a full endothelium-derived factor in rats. Vasc. Pharmacol. 2020. 128-129:106674. doi: 10.1016/j.vph.2020.106674.
31. Honey D., Wosnitzka E., Klann E., et al. Analysis of microglial BDNF function and expression in the motor cortex. Front. Cell. Neurosci. 2022. 16:961276. doi:10.3389/fncel.2022.961276.
32. Mauvais-Jarvis F., Lange C.A., Levin E.R. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev. 2022. 43. 720-742. doi:10.1210/endrev/bnab041.
33. Chen P., Li B., Ou-Yang L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022. 13. 839005. doi:10.3389/fendo.2022.839005.
34. Spritzer M.D., Roy E.A. Testosterone and Adult Neurogenesis. Biomolecules. 2020. 10(2). 225. doi: 10.3390/biom10020225.
35. Hodges T.E., Puri T.A., Blankers S.A., et al. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. Vitamins and Hormones. 2022. 118. 129-170.
36. Hu C., Yang J., Qi Z., et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedCom. 2022. 3(3). 161. DOI: 10.1002/mco2.161.
37. Blankers S.A., Galea L.A. Androgens and Adult Neurogenesis in the Hippocampus. Androd Clin Res Ther. 2021. 2(1). 201-215. doi:10.1089/andro.2021.0016.
38. Spritzer M.D., Roy E.A. Testosterone and adult neurogenesis. Biomolecules. 2020. 10. P. 225. doi:10.3390/biom10020225.
39. Kuwahara A., Nicholson K., Isaacs L., et al. Androgen Effects on Neural Plasticity. Androg Clin Res Ther. 2021. 2(1). 216-230. doi: 10.1089/andro.2021.0022.
40. Stepien B.K., Huttner W.B. Transport, Metabolism and Function of Thyroid Hormones in the Developing Mammalian Brain. Front. Endocrinol. 2019. 3(10). 209. doi:10.3389/fendo.2019.00209.
41. Grossklaus R., Liesenkotter K., Doubek K., et al. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients. 2023. 15(10). 2249. doi:10.3390/nu15102249.
42. Kapri D., Fanibunda S.E., Vaidya V.A. Thyroid hormone regulation of adult hippocampal neurogenesis: Putative molecular and cellular mechanisms. Vitamins and Hormones. 2022. 118. 1-33. doi:10.1016/bs.vh.2021.10.001.
43. Bernal J. Thyroid in Brain Development and Function. National Library of Medicine. 2022. V. 14. https://www.ncbi.nlm.nih.gov/books/NBK285549/.
44. Lin C., Li N., Chang H., et al. Dual effects of thyroid hormone on neurons and neurogenesis in traumatic brain injury. Cell Death & Disease. 2022. 11. 671. https://doi.org/10.1038/s41419-020-02836-9.
45. Farag E.A., Filobbos S.A., Afifi N.M., et al. Thyroxine restores hippocampal neurogenesis and synaptogenesis in a male rat model of carbimazole-induced hypothyroidism: a histological study. Beni-Suef University Journal of Basic and Applied Sciences. 2023. 12. 57.
46. Salloum-Asfar S., Shin K.C., Taha R.Z., et al. The Potential role of thyroid hormone therapy in neural Progenitor cell differentiation and its impact on Neurodevelopmental Disorders. Molecular Neurobiology. 2024. 61. 3330-3342.
Supplementary files
Review
For citations:
Teplyashina E.A., Malinovskaya N.A., Endrzheevskaya-Shurygina V.Yu. Hormonal regulation of neurogenesis. Transbaikalian Medical Bulletin. 2025;(1):195-207. (In Russ.) https://doi.org/10.52485/19986173_2025_1_195