Microvesicles and their role in cardiovascular pathology
https://doi.org/10.52485/19986173_2025_1_140
Abstract
In recent years, there has been a tendency to increase the number of acute myocardial infarctions (AMI) in young people. The search and study of risk factors (FR), pathogenetic mechanisms of cardiovascular complications (CVD) and methods of targeted exposure continues.
One of the mechanisms of MTR is the pathology of the hemostasis system-. vascular-platelet (microvesicles), coagulation hemostasis (thrombin, tissue factor\tissue factor inhibitor) and fibrinolysis systems (coagulation factor II and XIII), an imbalance of which can lead to vascular catastrophes. In recent decades, microvesicles of various origins have been studied with precision.
Microvesicles are found in the blood normally, but in vascular catastrophes their number increases significantly in the first hours of developing pathology. To assess the quantity and quality of microvesicles may allow timely initiation of therapy, which will lead to a decrease in the focus of ischemia and the development of various early and long-term complications.
Normally, microvesicles act as protectors, and their increase occurs in pathological processes. An increase in the concentration of microvesicles of various natures (leukocyte, platelet, erythrocyte) has been studied in oncology, obstetrics and gynecology, as well as in cardiovascular pathology. The determination of microvesicles in the blood can allow stratification of patients into high-risk groups, will allow early therapy to begin.
The study of the hemostasis system, especially individual components (microvesicles), allows us to gain new knowledge about the mechanisms of AMI development in the absence of traditional risk factors, to identify prognostically significant biological markers, as well as their concentration, allowing us to predict the risk of coronary events and complications in young patients.
About the Authors
N. S. GorbachevaRussian Federation
Natalia S. Gorbacheva - Head of the Cardiology Department of the Regional Clinical Emergency Hospital №2.
40 Lenin ave., Barnaul, 656038
N. G. Veselovskaya
Russian Federation
Nadezhda G. Veselovskaya - Doctor of Medical Sciences, Professor of the Department of Cardiology and Cardiovascular surgery.
40 Lenin ave., Barnaul, 656038
A. P. Momot
Russian Federation
Andrey P. Momot - Doctor of Medical Sciences, Professor, Director of the Altai branch of the Federal State Budgetary Institution "Hematology Research Center".
40 Lenin ave., Barnaul, 656038
G. A. Chumakova
Russian Federation
Galina A. Chumakova - Doctor of Medical Sciences, Professor of the Department of Therapy and General Medical Practice with the course of additional professional aducation.
40 Lenin ave., Barnaul, 656038
P. A. Gorbacheva
Russian Federation
Polina A. Gorbacheva - fifth year student of the Medical Faculty.
40 Lenin ave., Barnaul, 656038
References
1. Gomzikova M.O., Gajfullina R.F., Mustafin I.G., et. al. Membrane microvesicles: biological properties and involvement in the pathogenesis of diseases. Genes & Cells: 2022
2. Mariusz Z. Ratajczak, Janina Ratajczak Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future?. Leukemia: 2020; 34 (12): 3126–3135. DOI: 10.1038/s41375-020-01041-z.
3. Ståhl A.L., Johansson K., Mossberg M., et. al. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol: 2019; 34 (1): 11–30. DOI: 10.1007/s00467-017-3816-z.
4. Natesan S., Kataria J.M, Dhama K., et. al. Anti-neoplastic effect of chicken anemia virus VP3 protein (apoptin) in Rous sarcoma virus-induced tumours in chicken. J Gen Virol: 2016; 87 (10): 2933–2940. DOI: 10.1099/vir.0.82085-0.
5. Li Y., Liu X., Chen S., et. al. Effect of antiplatelet therapy on the incidence, prognosis, and rebleeding of intracerebral hemorrhage. CNS Neurosci Ther. 2023 Jun; 29 (6): 1484–1496. DOI: 10.1111/cns.14175.
6. Stahl Philip D., Raposo G. Extracellular vesicles: Exosomes and Microvesicles, Integrators of homeostasis. Physiology (Bethesda): 2019; 34 (1): 169–177. DOI: 10.1152/physiol.00045.2018.
7. Kalluri R., Lebla Valerie S. Biology, function, and biomedical applications of exosomes. Science: 2020; 367 (6478): eaau 6977. DOI: 10.1126/scienceaau6977.
8. Signorini L.F., Shimony S., Raanani P., et. al. Chronic Lymphocytic Leukemia (CLL)-Derived Extracellular Vesicles Educate Endothelial Cells to Become IL-6-Producing, CLL-Supportive Cells. Biomedicines. 2024 Jun 21; 12 (7): 1381. DOI: 10.3390/biomedicines12071381.
9. Nazarenko I. Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy. Recent Results Cancer Res. 2020; 215: 319–344. : DOI:0.1007/978-3-030-26439-0_17.
10. Nikolaeva M.G., Terehina V.Ju., Kudinov A.V., et. al. The role of extracellular vesicles of various origins in the development of preeclampsia. Bulletin of the Russian Academy of Medical Sciences.: 2021; 76 (32): 237–243.
11. Hemmatzadeh M., Shomali N., Yousefzadeh Y., et al. MicroRNAs: Small molecules with a large impact on pre-eclampsia. J Cell Physiol. 2020 Apr; 235 (4): 3235–3248. DOI: 10.1002/jcp.29286.
12. Wang Y., Liu J., Ma J., et al. ExosomalcircRNAs: biogenesis, effect and application in human diseases. Cell Death & Disease: 2020; 11: 32–43. PMID: 31277663 PMCID: PMC6610963 DOI: 10.1186/s12943-019-1041-z
13. Hou Pei-Pei, Luo Li-Juan, Chen Hang-Zi, et al. Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment. Mol Cell. 2020; 78 (6): 1192–1206.e10. PMID: 32470318 DOI: 10.1016/j.molcel.2020.05.004
14. Menk Kerstin, Sivaloganathan Saganja, Blackmann Annalen, Bender Claudia. Microvesicles in Cancer: Small Size, Large Potential. Int J Mol Sci. 2020; 21 (15): 5373. PMID: 32731639 PMCID: PMC7432491 DOI: 10.3390/ijms21155373
15. Shu Zeyu, Tan Jin, Miao Yuyang, et. al. The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J Cell Mol Med. 2019; 23 (12): 7933–7945. PMID: 31576661 PMCID: PMC6850938 DOI: 10.1111/jcmm.14716
16. Lv YingMei, Tan Jin, Miao Yuyang, et. al. The role of microvesicles and its active molecules in regulating cellular biology. J Cell Mol Med. 2019; 23 (12): 7894–7904. PMID: 31559684 PMCID: PMC6850934 DOI: 10.1111/jcmm.14667
17. Kraus Lindsay, Mohsin Sadia. Role of Stem Cell-Derived Microvesicles in Cardiovascular Disease. J Cardiovasc Pharmacol. 2020; 76 (6): 650–657. PMID: 33105323 PMCID: PMC7722078 DOI: 10.1097/FJC.0000000000000920
18. Shukla P., Wu J.C., Wakatsuki S., et. al. Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. J Am Heart Assoc. 2020 Mar 17; 9 (6): e014345. DOI: 10.1161/JAHA.119.014345.
19. Chen X., Gu J., Zhang X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology. 2024; 149 (4): 369–382. DOI: 10.1159/000538409.
20. Meldolesi Jacopo. Exosomes and Ectosomes in Intercellular Communication. Curr Biol. 2018; 28 (8): 435–444. PMID: 29689228 DOI: 10.1016/j.cub.2018.01.059
21. Alizadehasl A., Alavi M.S., Alavi M.S., et. al. TRPA1 as a promising target in ischemia/reperfusion: A comprehensive review. Iran J Basic Med Sci. 2024; 27 (3): 270–278. DOI: 10.22038/IJBMS.2023.74590.16198.
22. Panteleev M.A., Abaeva A.A., Nechipurenko D.Yu., et al. A.M. Physiology and pathology of extracellular vesicles. Oncogematology.: 2017; 12 (1): 62–70.
23. Markova K.L., Kogan I.Yu., Sheveleva A.R., et al. Microvesicles of leukocyte origin. Bulletin of the Russian Academy of Medical Sciences: 2018; 73 (6): 378–387.
24. Momot A.P., Tsaregordtseva N.O., Fedorov D.V., et al, Platelet microvesicles and their role in ensuring hemostatic potential. Siberian Medical Journal: 2020; 40 (2): 4–14.
25. Ma SR, Xia HF, Gong P, et al. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines. 2023 Oct 16; 11 (10): 2798. DOI: 10.3390/biomedicines11102798.
26. Sheveleva O.N., Domaratskaya E.I., Payushina O.V. Extracellular vesicles and prospects for their use for tissue regeneration. Biological membranes. 2019; 36 (1): 3–14. DOI: 10.1134/S0233475518050109
27. Kim I.K., Song B.W., Lim S., et. al. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. Biology (Basel). 2023 Mar 25; 12 (4): 498. DOI: 10.3390/biology12040498.
28. Valente-Acosta B, Flores-García M, González-Zárate, et al. Fibrinolytic Activity of Circulating Microvesicles Is Associated with Progression of Breast Cancer. Tohoku J Exp Med. 2020; 250 (2): 121–128. PMID: 32115494. DOI: 10.1620/tjem.250.121.
29. Li X., Wu Y., Jin Y. Exosomal LncRNAs and CircRNAs in lung cancer: Emerging regulators and potential therapeutic targets. Noncoding RNA Res. 2024; 9 (4): 1069–1079. PMID: 39022675; PMCID: PMC11254510. DOI: 10.1016/j.ncrna.2024.06.010.
30. Zhu Z., Chen Z., Wang M., et al. Detection of plasma exosomal miRNA-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J Ovarian Res. 2022; 15 (1): 27. PMID: 35183243; PMCID: PMC8858566. DOI: 10.1186/s13048-022-00961-x.
31. Pimenta R., Malulf F.C., Romão P., et al. Evaluation of AR, AR-V7, and p160 family as biomarkers for prostate cancer: insights into the clinical significance and disease progression. J Cancer Res Clin Oncol. 2024; 150 (2): 70. PMID: 38305916; PMCID: PMC10837222. DOI: 10.1007/s00432-023-05598-x.
32. Liu Z.Z., Jose P.A., Yang J., et. al. Importance of extracellular vesicles in hypertension. Exp Biol Med (Maywood). 2021; 246 (3): 342–353. DOI: 10.1177/1535370220974600.
33. Habibi A., Zarei-Behjani Z., Falamarzi K., et al. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol. 2023; 14: 1097456. PMID: 36969177; PMCID: PMC10033955. DOI: 10.3389/fimmu.2023.1097456.
34. Siegel P.M., Schmich J., Barinov G., et al. Cardiomyocyte microvesicles: proinflammatory mediators after myocardial ischemia? J Thromb Thrombolysis. 2020 Oct; 50 (3): 533–542. doi: 10.1007/s11239-020-02156-x. Erratum in: J Thromb Thrombolysis. 2021 Oct;52(3):981. DOI: 10.1007/s11239-021-02563-8.
35. Poisson J., Tanguy M., Davy H., et al. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest. 2020 May 1; 130 (5): 2630–2643. DOI: 10.1172/JCI124566.
36. Soh R.Y., Low T.T., Sia C.H., et al. Ischaemia with no obstructive coronary arteries: a review with focus on the Asian population. Singapore Med J. 2024 Jul 1; 65 (7): 380–388. DOI: 10.4103/singaporemedj.SMJ-2023-116.
37. Kiseleva A. V., Sotnikova E. A., Kutsenko V. A. et al. Circulating microRNAs and the development of collateral circulation in chronic coronary artery occlusion. 2024; 23 (10): 4190. DOI: 10.15829/1728-8800-2024-4190.
38. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac Extracellular Vesicles in Normal and Infarcted Heart. Int J Mol Sci. 2016 Jan 5; 17 (1): 63. DOI: 10.3390/ijms17010063.
39. Safira A., Tjahjadi A.K., Adytia G.J., et. al. Peripartum cardiomyopathy unveiled: Etiology, diagnosis, and therapeutic insights. Curr Probl Cardiol. 2024 May; 49 (5): 102474. DOI: 10.1016/j.cpcardiol.2024.102474.
40. Koziol K.J., Aronow W.S. Peripartum Cardiomyopathy: Current Understanding of Pathophysiology, Diagnostic Workup, Management, and Outcomes. Curr Probl Cardiol. 2023 Aug; 48 (8): 101716. DOI: 10.1016/j.cpcardiol.2023.101716.
41. El-Khsosy A., Mohamed M.A., Khaled A., et. al. EVs predict the outcomes in patients with acute myocardial infarction. Tissue Cell. 2022 Aug; 77: 101857. DOI: 10.1016/j.tice.2022.101857.
Supplementary files
Review
For citations:
Gorbacheva N.S., Veselovskaya N.G., Momot A.P., Chumakova G.A., Gorbacheva P.A. Microvesicles and their role in cardiovascular pathology. Transbaikalian Medical Bulletin. 2025;(1):140-153. (In Russ.) https://doi.org/10.52485/19986173_2025_1_140