Preview

Transbaikalian Medical Bulletin

Advanced search

The role of thrombin in the development of inflammation

https://doi.org/10.52485/19986173_2025_1_107

Abstract

 

Thrombin is the main driver of the linker mechanism for immune response and hemostasis. Due to its specific structure, which determines the selectivity of functional activity against cells of the inflammatory microenvironment, this serine proteinase is actively involved in the processes of inflammation and healing, carcinogenesis and pathological processes of immunity. The uniqueness of its action is revealed due to the presence of special receptors activated by proteinases (PARs). Such factors as their expression on different cell types, the spatiotemporal amount of thrombin, the localization of the pathological process in the body, pathology in the hemostasis and immunity system will determine the variants of events mediated by the presented serine proteinase.

The review presents current information on some mechanisms of interaction between the main effector cells of inflammation and thrombin with the participation of PARs. The molecular structure of the latter and the dependence of their functional activity on conformational states are considered. The role of thrombin as one of the main regulators of the immunoinflammation process is highlighted.

About the Authors

D. S. Belousov
Chita State Medical Academy
Russian Federation

Daniil S. Belousov - postgraduate student of the Department of Normal Physiology named after Professor B.I. Kuznik.

39a Gorky st., Chita, 672000

Author ID РИНЦ 1261731



A. V. Solpov
Chita State Medical Academy
Russian Federation

Alexey V. Solpov - Doctor of Medical Sciences, Associate Professor, Professor of the Department of Normal Physiology named after Professor B.I. Kuznik, Leading Researcher at the Laboratory of Physiology and Pathology of Hemostasis at the Research Institute of Molecular Medicine.

39a Gorky st., Chita, 672000

Researcher ID JVZ-8040-2024, Author ID РИНЦ 440891, Author ID Scopus 13406034300



Yu. A. Vitkovsky
MEDLUX multidisciplinary medical center
Russian Federation

Yuri A. Vitkovsky - Doctor of Medical Sciences, Professor, allergologist-immunologist.

97/1 Babushkina St., Chita, 672039

Researcher ID AAH-4250-2019, Author ID РИНЦ 288798, Author ID Scopus 6603125558



References

1. Chinnaraj M., Planer W., Pozzi N. Structure of Coagulation Factor II: Molecular Mechanism of Thrombin Generation and Development of Next-Generation Anticoagulants. Front Med (Lausanne). 2018 Oct 2. 5. 281. doi: 10.3389/fmed.2018.00281.

2. Dukhin O.A., Kalinskaya A.I., Shpektor A.V., et al. The role of thrombin in the pathogenesis of atherosclerosis and its complications. Kardiologiia. 2022. 62(3). 73-81. DOI: 10.18087/cardio.2022.3.n1968. in Russian.

3. Shen G., Cui W., Zhang H. et al. Warfarin Traps Human Vitamin K Epoxide Reductase in an Intermediate State during Electron Transfer. Nat Struct Mol Biol. 2017 Jan. 24(1). 69-76. doi: 10.1038/nsmb.3333.

4. Chinnaraj M., Chen Z., Pelc L.A. et al. Structure of Prothrombin in the Closed Form Reveals New Details on the Mechanism of Activation. Sci Rep. 2018 Feb 13. 8(1). 2945. doi: 10.1038/s41598-018-21304-1.

5. Motta J.P., Palese S., Giorgio C. et al. Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J Crohns Colitis. 2021 May 4. 15(5). 787-799. doi: 10.1093/ecco-jcc/jjaa229. PMID: 33201214; PMCID: PMC8095389.

6. Woting A., Blaut M. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients. 2018 May 28. 10(6). 685. doi: 10.3390/nu10060685.

7. Stojanovski B.M., Pelc L.A., Zuo X., et al. Enhancing the Anticoagulant Profile of Meizothrombin. Biomol Concepts. 2018 Dec 26. 9(1). 169-175. doi: 10.1515/bmc-2018-0016.

8. Vlasenko L.P., Yakutin M.V. Mediating the Effect of Thrombin on Platelets by PAR4 and PAR1 Receptors. International Research Journal. 2020. 8(98). doi: 10.23670/IRJ.2020.98.8.040. in Russian.

9. Rovai E.S., Alves T., Holzhausen M. Protease-activated Receptor 1 as a Potential Therapeutic Target for COVID-19. Exp Biol Med (Maywood). 2021 Mar. 246(6). 688-694. doi: 10.1177/1535370220978372.

10. Adams G.N., Sharma B.K., Rosenfeldt L. et al. Protease-activated Receptor-1 Impedes Prostate and Intestinal Tumor Progression in Mice. J Thromb Haemost. 2018 Nov. 16(11). 2258-2269. doi: 10.1111/jth.14277.

11. Palacios-Acedo A.L., Mège D., Crescence L. et al. Platelets, Thrombo-Inflammation, and Cancer: Collaborating With the Enemy. Front Immunol. 2019 Jul 31. 10. 1805. doi: 10.3389/fimmu.2019.01805.

12. Huang Y., Li X., Zhu L. et al. Thrombin Cleaves IL-33 and Modulates IL-33-activated Allergic Lung Inflammation. Allergy. 2022 Jul. 77(7). 2104-2120. doi: 10.1111/all.15210.

13. Iannucci J., Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells. 2023 Apr 23. 12(9). 1222. doi: 10.3390/cells12091222.

14. Luyendyk J.P., Schoenecker J.G., Flick M.J. The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood. 2019 Feb 7. 133(6). 511-520. doi: 10.1182/blood-2018-07-818211.

15. Wojta J. Macrophages and Thrombin-Another Link between Inflammation and Coagulation. Thromb Haemost. 2020 Apr. 120(4). 537. doi: 10.1055/s-0040-1708551.

16. Hohensinner P.J., Baumgartner J., Kral-Pointner J.B. et al. PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent. Arterioscler Thromb Vasc Biol. 2017 Oct. 37(10). 1913-1922. doi: 10.1161/ATVBAHA.117.309383.

17. Miyake Y., D'Alessandro-Gabazza C.N., Takagi T. et al. Dose-dependent Differential Effects of Thrombin in Allergic Bronchial Asthma. J Thromb Haemost. 2013 Oct. 11(10). 1903-15. doi: 10.1111/jth.12392.

18. Burnstock G., Boeynaems J.M. Purinergic Signalling and Immune Cells. Purinergic Signal. 2014 Dec. 10(4). 529-64. doi: 10.1007/s11302-014-9427-2.

19. Ferrari D., Vuerich M., Casciano F. et al. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol. 2020 Jul 8. 11. 1339. doi: 10.3389/fimmu.2020.01339.

20. Yang H., Li T., Wei J., et al. Induction of Tumor Necrosis Factor (TNF) Release from Subtypes of T Cells by Agonists of Proteinase Activated Receptors. Mediators Inflamm. 2013. 2013. 165453. doi: 10.1155/2013/165453.

21. Liu C., Lan Q., Cao S. et al. Thrombin Receptor Activating Peptide-6 Decreases Acute Graft-Versus-Host Disease through Activating GPR15. Leukemia. 2024 Jun. 38(6). 1390-1402. doi: 10.1038/s41375-024-02212-y.

22. Hurley A., Smith M., Karpova T. et al. Enhanced Effector Function of CD8(+) T Cells from Healthy Controls and HIV-infected Patients Occurs through Thrombin Activation of Protease-activated Receptor 1. J Infect Dis. 2013 Feb 15. 207(4). 638-50. doi: 10.1093/infdis/jis730.

23. Friebel J., Witkowski M., Wegner M. et al. Cytotoxic CD8+ T Cells Are Involved in the Thrombo-Inflammatory Response during First-Diagnosed Atrial Fibrillation. Cells. 2022 Dec 29. 12(1). 141. doi: 10.3390/cells12010141.

24. Chen H., Smith M., Herz J. et al. The Role of Protease-activated Receptor 1 Signaling in CD8 T Cell Effector Functions. iScience. 2021 Oct 30. 24(11). 103387. doi: 10.1016/j.isci.2021.103387.

25. Peng Q., Ratnasothy K., Boardman D.A. et al. Protease Activated Receptor 4 as a Novel Modulator of Regulatory T Cell Function. Front Immunol. 2019 Jun 18. 10. 1311. doi: 10.3389/fimmu.2019.01311.

26. Kalashnyk O., Petrova Y., Lykhmus O. et al. Expression, Function and Cooperating Partners of Protease-activated Receptor Type 3 in Vascular Endothelial Cells and B Lymphocytes Studied with Specific Monoclonal Antibody. Mol Immunol. 2013 Jul. 54(3-4). 319-26. doi: 10.1016/j.molimm.2012.12.021.

27. López M.L., Soriano-Sarabia N., Bruges G. et al. Expression Pattern of Protease Activated Receptors in Lymphoid Cells. Cell Immunol. 2014 Mar-Apr. 288(1-2). 47-52. doi: 10.1016/j.cellimm.2014.02.004.

28. Fang X., Liao R., Yu Y. et al. Thrombin Induces Secretion of Multiple Cytokines and Expression of Protease-Activated Receptors in Mouse Mast Cell Line. Mediators Inflamm. 2019 Nov 14. 2019. 4952131. doi: 10.1155/2019/4952131.

29. Antoniak S., Tatsumi K., Bode M. et al. Protease-Activated Receptor 1 Enhances Poly I:C Induction of the Antiviral Response in Macrophages and Mice. J Innate Immun. 2017. 9(2). 181-192. doi: 10.1159/000450853.

30. Paul S., Mukherjee T., Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel). 2024 Apr 19. 16(8). 1568. doi: 10.3390/cancers16081568.

31. Mudd J.C., Panigrahi S., Kyi B. et al. Inflammatory Function of CX3CR1+ CD8+ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. J Infect Dis. 2016 Dec 15. 214(12). 1808-1816. doi: 10.1093/infdis/jiw463.

32. Carrim N., Arthur J.F., Hamilton J.R. et al. Thrombin-induced Reactive Oxygen Species Generation in Platelets: A Novel Role for Protease-activated Receptor 4 and GPIbα. Redox Biol. 2015 Dec. 6. 640-647. doi: 10.1016/j.redox.2015.10.009.

33. Kaplan Z.S., Zarpellon A., Alwis I. et al. Thrombin-dependent Intravascular Leukocyte Trafficking Regulated by Fibrin and the Platelet Receptors GPIb and PAR4. Nat Commun. 2015 Jul 23. 6. 7835. doi: 10.1038/ncomms8835.

34. Shimizu S., Tojima I., Takezawa K. et al. Thrombin and Activated Coagulation Factor X Stimulate the Release of Cytokines and Fibronectin from Nasal Polyp Fibroblasts via Protease-activated Receptors. Am J Rhinol Allergy. 2017 Jan 1. 31(1). 13-18. doi: 10.2500/ajra.2017.31.4400.

35. Sébert M., Denadai-Souza A., Quaranta M. et al. Thrombin Modifies Growth, Proliferation and Apoptosis of Human Colon Organoids: a Protease-activated Receptor 1- and Protease-activated Receptor 4-Dependent Mechanism. Br J Pharmacol. 2018 Sep. 175(18). 3656-3668. doi: 10.1111/bph.14430.

36. Shimizu T. Role of Coagulation Factors and Eosinophils in Chronic Rhinosinusitis-associated Tissue Remodeling. Practica Oto-Rhino-Laryngologica. 2012. 105(9). 803-812. Available from: https://doi.org/10.5631/jibirin.105.803

37. Kim D.Y., Cho S.H., Takabayashi T., et al. Chronic Rhinosinusitis and the Coagulation System. Allergy Asthma Immunol Res. 2015 Sep. 7(5). 421-30. doi: 10.4168/aair.2015.7.5.421.

38. Han C., Xia X., Jiao S. et al. Tripartite Motif Containing Protein 37 Involves in Thrombin Stimulated BV-2 Microglial Cell Apoptosis and Interleukin 1β Release. Biochem Biophys Res Commun. 2019 Sep 3. 516(4). 1252-1257. doi: 10.1016/j.bbrc.2019.06.158.

39. Ye X., Zuo D., Yu L. et al. ROS/TXNIP Pathway Contributes to Thrombin Induced NLRP3 Inflammasome Activation and Cell Apoptosis in Microglia. Biochem Biophys Res Commun. 2017 Apr 1. 485(2). 499-505. doi: 10.1016/j.bbrc.2017.02.019.

40. Yin M., Chen Z., Ouyang Y. et al. Thrombin-induced, TNFR-dependent miR-181c Downregulation Promotes MLL1 and NF-κB Target Gene Expression in Human Microglia. J Neuroinflammation. 2017 Jun 29. 14(1). 132. doi: 10.1186/s12974-017-0887-5.


Supplementary files

Review

For citations:


Belousov D.S., Solpov A.V., Vitkovsky Yu.A. The role of thrombin in the development of inflammation. Transbaikalian Medical Bulletin. 2025;(1):107-120. (In Russ.) https://doi.org/10.52485/19986173_2025_1_107

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)