Preview

Transbaikalian Medical Bulletin

Advanced search

Antioxidants in the prevention of nervous system disorders in diabetes mellitus

https://doi.org/10.52485/19986173_2023_4_56

Abstract

Diabetes mellitus (DM) is one of the most common metabolic diseases with a large number of complications. Disorders of the nervous system (NS) are the main complication of DM, the pathophysiology of which is not fully understood. The dysfunction of the central nervous system against the background of DM primarily includes diabetic encephalopathy (DE) and peripheral polyneuropathy (PP). Oxidative stress (OS) is considered one of the leading hypotheses leading to NS disorders in DM. In addition, OS is discussed as one of the pathophysiological links in the development of type 1 and type 2 DM. OS causes mitochondrial dysfunction, neuroinflammation, with a parallel decrease of the antioxidant system, having a negative effect on the brain. The important role of the OS in the occurrence of PP is discussed. Antioxidants (AO) have direct indications for the correction of central nervous system disorders in DM. Preclinical studies have shown the preventive role of various AO in DE and PP. Further clinical studies are needed to substantiate the appointment of AO in the prevention of NS disorders in DM.

About the Author

Yu. V. Bykov Yu.V.
Stavropol State Medical University; City Children's Clinical Hospital named after G.K. Filippsky
Russian Federation

310 Mira str., Stavropol, 355017

5 Ponomareva str., Stavropol, 355002



References

1. Gurel-Gokmen B., Ipekci H., Oktay S. et al. Melatonin improves hyperglycemia induced damages in rat brain. Diabetes Metab Res Rev. 2018. 34(8). 3060. DOI: 10.1002/dmrr

2. Rehman K., Khan I.I., Akash M.S., Jabeen K., Haider K. Naringenin downregulates inflammationmediatednitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. J Food. 2020. e13422. DOI: 10.1111/jfbc.13422

3. Cázares-Camacho R., Domínguez-Avila J.A., Astiazarán-García H., Montiel-Herrera M., González-Aguilar G.A. Neuroprotective effects of mango cv. 'Ataulfo' peel and pulp against oxidative stress in streptozotocininduced diabetic rats. J Sci Food Agric. 2021. 101(2). 497-504. DOI: 10.1002/jsfa.10658

4. Bykov Yu.V. The role of oxidative stress in the development of complications in diabetes mellitus. Medical Bulletin of the North Caucasus, 2022(а). 3. 322-327. DOI: 10.14300/mnnc.2022.17080. in Russian.

5. Singh B., Kumar A., Singh H. et al. Zingerone produces antidiabetic effects and attenuates diabetic nephropathy by reducing oxidative stress and overexpression of NF-κB, TNF-α, and COX-2 proteins in rats. J Funct Foods. 2020. 74. 104199.

6. Hu Y., Zhang Q., Wang J.C et al. Resveratrol improves diabetes-induced cognitive dysfunction in part through the miR-146a-5p/TXNIP axis. Kaohsiung J Med Sci. 2023. 39(4). 404-415. DOI: 10.1002/kjm2.12643

7. Chen X., Famurewa A.C., Tang J., Olatunde O.O., Olatunji O.J. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci. 2022. 25(8). 1774-1784. DOI: 10.1080/1028415X.2021.1901047

8. Meyhöfer S., Schmid S.M. [Diabetes complications - diabetes and the nervous system]. [Article in German]. Dtsch Med Wochenschr. 2020. 145(22). 1599-1605. DOI: 10.1055/a-1038-0102

9. Yin Q., Chen J., Ma S. et al. Pharmacological inhibition of galectin-3 ameliorates diabetes-associated cognitive impairment, oxidative stress and neuroinflammation in vivo and in vitro. J Inflamm Res. 2020. 13. 533–542. DOI: 10.2147/JIR.S273858

10. Silva-Rodrigues T., de-Souza-Ferreira E., Machado C.M. et al. Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain. Free Radic Biol Med. 2020. 160. 796-806. DOI: 10.1016/j.freeradbiomed.2020.09.017

11. Bykov Yu.V., Baturin V.A. Cognitive impairment in type 1 diabetes mellitus. Siberian Scientific Medical Journal. 2023. 43(1). 4–12. DOI: 10.18699/SSMJ20230101. in Russian.

12. Pivari F., Mingione A., Brasacchio C., Soldati L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients. 2019. 11(8). 1837. DOI: 10.3390/nu11081837

13. Rahmani G., Farajdokht F., Mohaddes G. et al. Garlic (Allium sativum) improves anxiety- and depressiverelated behaviors and brain oxidative stress in diabetic rats. Arch Physiol Biochem. 2020. 126(2). 95-100. DOI: 10.1080/13813455.2018.1494746

14. Pereira M.M., de Morais H., Santos Silva E.D. et al. The antioxidant gallic acid induces anxiolytic-, but not antidepressant-like effect, in streptozotocin-induced diabetes. Metab Brain Dis. 2018. 33(5). 1573-1584. DOI: 10.1007/s11011-018-0264-9

15. Gasparin A.X., Rosa E.S., Alves Jesus C. H. et al. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res. 2021. 1767. 147557. DOI: 10.1016/j.brainres.2021.147557

16. Okla M.K., Alamri S.A., Alatar A.A. et al. Antioxidant, Hypoglycemic, and Neurobehavioral Effects of a Leaf Extract of Avicennia marina on Autoimmune Diabetic Mice. Evid Based Complement Alternat Med. 2019. 2019. 1263260. DOI: 10.1155/2019/1263260

17. Darenskaya M.A., Kolesnikova L.I., Kolesnikov S.I. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med. 2021. 171(2). 179-189. DOI: 10.1007/s10517-021-05191-7

18. Luna R., Manjunatha R.T., Bollu B. et al. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus. 2021. 13(10). 19142. DOI: 10.7759/cureus.19142

19. Infante-Garcia C., Garcia-Alloza M. Review of the Effect of Natural Compounds and Extracts on Neurodegeneration in Animal Models of Diabetes Mellitus. Int J Mol Sci. 2019. 20(10). 2533. DOI: 10.3390/ijms20102533

20. Farbood Y., Ghaderi S., Rashno M. et al. Sesamin: A promising protective agent against diabetes-associated cognitive decline in rats. Life Sci. 2019. 230. 169-177. DOI: 10.1016/j.lfs.2019.05.071

21. Chen R., Shi J., Yin Q. et al. Morphological nd pathological characteristics of brain in diabetic encephalopathy, J. Alzheim. Dis. 65 (2018) 15–28, DOI: 10.3233/JAD-180377.

22. Bykov Yu.V. Oxidative stress and diabetic encephalopathy: pathophysiological aspects. Modern problems of science and education. 2022. 6-2. DOI: 10.17513/spno.32314

23. Guo Y., Zhang C., Wang C. et al. Thioredoxin-1 Is a Target to Attenuate Alzheimer-Like Pathology in Diabetic Encephalopathy by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Front Physiol. 2021. 12. 651105. DOI: 10.3389/fphys.2021.651105

24. Kodumuri P.K., Thomas C., Jetti R., Pandey A.K. Fenugreek seed extract ameliorates cognitive deficits in streptozotocin-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2019. 30(4). 1–11. DOI: 10.1515/jbcpp-2018-0140

25. Bell D.S.H. Diabetic Mononeuropathies and Diabetic Amyotrophy. Diabetes Ther. 2022. 13(10). 1715- 1722. doi: 10.1007/s13300-022-01308-x

26. Agochukwu-Mmonu N., Pop-Busui R., Wessells H., Sarma AV. Autonomic neuropathy and urologic complications in diabetes. Auton Neurosci. 2020. 229. 102736. DOI: 10.1016/j.autneu.2020.102736

27. Sharifi-Rad M., Kumar N.V., Zucca P. et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020. 11. 694. DOI: 10.3389/fphys.2020.00694

28. Janciauskiene S. The Beneficial Effects of Antioxidants in Health And Diseases. Chronic Obstr Pulm Dis. 2020. 7(3). 182-202. DOI: 10.15326/jcopdf.7.3.2019.0152

29. Bykov Yu.V., Baturin V.A. The role of oxidative stress in the pathophysiology of type 1 diabetes mellitus. Pathogenesis. 2022. 20(4). 35-39. DOI: 0000-0003-4705-3823

30. Sidiropoulou G.A., Metaxas A., Kourti M. Natural antioxidants that act against Alzheimer's disease through modulation of the NRF2 pathway: a focus on their molecular mechanisms of action. Front Endocrinol (Lausanne). 2023. 14. 1217730. DOI: 10.3389/fendo.2023.1217730

31. Qi X., Jha S.K., Jha N.K. et al. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer. 2022. 21(1). 204. DOI: 10.1186/s12943-022-01668-9

32. Clemente-Suárez V.J., Bustamante-Sanchez A., Mielgo-Ayuso J. Antioxidants and Sports Performance. Nutrients. 2023. 15(10). 2371. DOI: 10.3390/nu15102371

33. Hemmati A.A., Alboghobeish S., Ahangarpour A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. Korean J. Physiol. Pharmacol. 2018. 22. 257–267. DOI: 10.4196/kjpp.2018.22.3.257

34. Adefegha S.A., Dada F.A., Oyeleye S.I., Oboh G. Effects of berberine on cholinesterases and monoamine oxidase activities, and antioxidant status in the brain of streptozotocin (STZ)-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2021. 33(4). 389-397. DOI: 10.1515/jbcpp-2020-0173

35. Seung T.W., Park S.K., Kang J.Y. et al. Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice. Food Res Int. 2018. 105. 589–598. DOI: 10.1016/j.foodres.2017.11.063

36. Arnold S.E., Arvanitakis Z., Macauley-Rambach S.L. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018. 14. 168–181. DOI: 10.1038/nrneurol.2017.185

37. Pesce M., Tatangelo R., La Fratta I. et al. Aging-related oxidative stress: Positive effect of memory training. Neuroscience. 2018. 370. 246–255. DOI: 10.1016/j.neuroscience.2017.09.046

38. Bari A., Shah S.M., Al-Joufi F.A. et al. Effects of Artemisia macrocephala Jacquem on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules. 2022. 27(8). 2399. DOI: 10.3390/molecules27082399

39. Marefati N., Abdi T., Beheshti F. et al. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Horm Mol Biol Clin Investig. 2021. 43(1). 15-26. DOI: 10.1515/hmbci-2021-0033

40. Pathak R., Sachan N., Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed Pharmacother. 2022. 150. 113025. DOI: 10.1016/j.biopha.2022.113025

41. Viollet B., Guigas B., Sanz Garcia N. et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012. 122. 253–70. DOI: 10.1042/CS20110386

42. Domínguez R.O., Marschoff E.R., González S.E. et al. Type 2 diabetes and/or its treatment leads to less cognitive impairment in Alzheimer’s disease patients. Diabetes Res Clin Pract. 2012. 98. 68–74. DOI: 10.1016/j.diabres.2012.05.013

43. Patrone C., Eriksson O., Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol. 2014. 2(3). 256-62. DOI: 10.1016/S2213-8587(13)70125-6

44. Miller B.W., Willett K.C., Desilets A.R. Rosiglitazone and pioglitazone for the treatment of Alzheimer’s disease. Ann Pharmacother. 2011. 45. 1416–24. DOI: 10.1345/aph.1Q238

45. Salcedo I., Tweedie D., Li Y., Greig N.H. Neuroprotective and neurotrophic actions of glucagonlike peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol. 2012. 166. 1586–99. DOI: 10.1111/j.1476-5381.2012.01971.x

46. Rafiullah M., Siddiqui K. Pharmacological Treatment of Diabetic Peripheral Neuropathy: An Update. CNS Neurol Disord Drug Targets. 2022. 21(10). 884-900. DOI: 10.2174/1871527320666210303111939

47. Cheng Y.C., Chiu Y.M., Dai Z.K., Wu B.N. Loganin Ameliorates Painful Diabetic Neuropathy by Modulating Oxidative Stress, Inflammation and Insulin Sensitivity in Streptozotocin-Nicotinamide-Induced Diabetic Rats. Cells. 2021. 10(10). 2688. DOI: 10.3390/cells10102688

48. Piao F., Gao B., Yuan X. et al. Taurine Ameliorates Oxidative Stress in Spinal Cords of Diabetic Rats via Keap1-Nrf2 Signaling. Adv Exp Med Biol. 2022. 1370. 235-242. DOI: 10.1007/978-3-030-93337-1_23


Review

For citations:


Bykov Yu.V. Yu.V. Antioxidants in the prevention of nervous system disorders in diabetes mellitus. Transbaikalian Medical Bulletin. 2023;(4):56-66. (In Russ.) https://doi.org/10.52485/19986173_2023_4_56

Views: 167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)