Preview

Transbaikalian Medical Bulletin

Advanced search

PLATELET FUNCTIONS. HISTORICAL DIGRESSION

https://doi.org/10.52485/19986173_2022_3_90

Abstract

The history of platelet function studies has begun relatively recently, at the end of the 19th century. Although humanity has treated blood with reverence since ancient times, attributing supernatural powers to it. Initially, people believed that blood can influence person’s character, for example, dark blood contains harmful substances which are need to be disposed of by bloodletting.

There is a rational grain in this thought, but the implementation method entails serious side effects. As time were passing by, the interest grew bigger. With the invention of optical devices, researchers have seen that blood can be divided into components. Thus began the history of the formed elements of blood. The first were erythrocytes, but then the rest did not hide from the tenacious eyes of researchers. Various functions were attributed to shaped elements, some of the functions were proved later, some were refuted. Now, in modern times, we still do not know all the functions. As for platelets, their eras of research can be divided into an initial "descriptive period" extending from about 1880-1960, during which many of the classic clinical features of platelet disorders were described in detail; the subsequent "mechanistic period", covering the last 50 years, made possible by the introduction of biochemical, cellular-biological, molecular-biological and, more recently, structural-biological, genomic and computational methods.

About the Authors

T. O. Burdienko
Clinical medical center Chita city
Russian Federation

6 Kohansky str., Chita, Russia, 672038



N. N. Tsybikov
Chita State Medical Academy
Russian Federation

39 A Gorky str., Chita, 672000



E. V. Fefelova
Chita State Medical Academy
Russian Federation

39 A Gorky str., Chita, 672000



References

1. Berger E.E., Tutorskaja M.S., Balalykina D.A., pod.red. Reader on the history of medicine: textbook. Moscow. Litera. 2012. 617. in Russian.

2. Jaroshevskij M.G. History of psychology: from antiquity to the middle of the 20th century: a textbook for universities. 2nd edition. Moscow. Akademija. 1997. 409. in Russian.

3. Italiano J., Patel S., Hartwig J. Mechanics of proplatelet elaboration. Thromb Haemost. 2007. 1. 18–23. doi: 10.1111/j.1538-7836.2007.02487.x

4. Tong M., Seth P., Penington D. Proplatelets and stress platelets. Blood. 1987. 2. 522–8.

5. Trowbridge A. Proplatelets and stress platelets. Blood. 1987. 2. 600.

6. Burjachkovskaja L.I., Markosjan R.A. Morpho-functional features of bipolar forms of platelets. Bjulleten' VKNC AMN SSSR. 1987. 1. 66–72. in Russian.

7. Italiano J., Lecine P., Shivdasani R., Hartwig J. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. Cell Biol. 1999. 6. 1299–312.

8. Junt T., Schulze H., Chen Z., Massberg S., Goerge T., Krueger A., Wagner D.D, Graf T., Italiano J.E., Shivdasani R.A., Andrian U.H. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007. 317. 1767–70. doi: 10.1126/science.1146304.

9. Schulze H., Shivdasani R. Mechanisms of thrombopoiesis. Thromb Haemost. 2005. 3. 1717–24. doi: 10.1111/j.1538-7836.2005.01426.x.

10. Kuznik B.I., Cybikov N.N., Vitkovskij Ju.A. Unified humoral body defense system. Zabajkal'skij medicinskij vestnik. 2004. 4. 13-19. in Russian.

11. Serebrjanaja N.B., Shanin S.N., Fomicheva E.E., Jakuceni P.P. Platelets as activators and regulators of inflammatory and immune reactions. Part 1. Main characteristics of platelets as inflammatory cells. Medicinskaja immunologija. 2018. 6. 785–796. in Russian. doi: 10.15789/1563-0625-2018-6-785-796.

12. Machabeli M.S. Coagulopathic syndromes. Moscow. Medicina. 1970. 304. in Russian.

13. Sechenov I.M. Selected works. Moscow. State Educational and Pedagogical Publishing House of the Ministry of Education of the Russian Federation. 1953. in Russian.

14. Kuznik B.I. Cellular and molecular mechanisms of regulation of the hemostasis system in normal and pathological conditions: monograph. Chita. Jekspress-izdatel'stvo. 2010. 832. in Russian.

15. Gusejnov Ch.S. Physiology and pathology of platelets. Moscow. Medicina. 1971. 176. In Russian.

16. Warshaw A.L., Laster L., Shulman N.R. The stimulation by thrombin of glucose oxidation in human platelets. Clin Invest. 1966. 12. 1923-1934. doi: 10.1172/JCI105497.

17. Weyrich A.S., Lindemann S., Tolley N.D., Kraiss L.W., Dixon D.A., Mahoney T.M., Prescott S.P., Zimmerman G.A. Change in protein phenotype without a nucleus: translational control in platelets. Semin Thromb Hemost. 2004. 4. 491–8. doi: 10.1055/s-2004-833484.

18. Warshaw A.L., Laster L., Shulman N.R. Protein synthesis by human platelets. The Journal of clinical investigation. 1966. 45. 1923–34. doi: 10.1172/JCI105497.

19. Booyse F.M., Rafelson M.E. In vitro incorporation of amino-acids into the contractile protein of human blood platelets. Nature. 1967. 15. 283–284.

20. Booyse F.M., Rafelson M.E. Stable messenger RNA in the synthesis of contractile protein in human platelets. Biochim Biophys Acta. 1967. 22. 188–90. doi: 10.1016/0005-2787(67)90673-9.

21. Agam G., Bessler H., Djaldetti M. In vitro DNA and RNA synthesis by human platelets. Biochim Biophys Acta. 1976. 425. 41–8. doi: 10.1016/005-2787(76)90214-8.

22. Soslau G. De novo synthesis of DNA in human platelets. Arch Biochem Biophys.1983. 226. 252–6. doi: 10.1016/0003-9861(83)90291-6.

23. Rostomjan M.A., Abramjan K.S. Ultrastructure of blood cells. Erevan: Izdatel'svo AN Armjanskoj SSR. 1975. 155. in Russian.

24. Chereshnev V.A., Jushkov B.G., Klimin V.G., Butorina E.V. Thrombocytopoiesis: monograph. Moscow. Medicina. 2007. 272. in Russian.

25. Vitkovskij Ju.A., Kuznik B.I., Solpov A.V. Results of a 10-year study of the mechanisms of lymphocytic-platelet adhesion. Zabajkal'skij medicinskij vestnik. 2008. 2. 36-41. in Russian.

26. Solpov A.V., Serebrjakova N.A., Lonchakova A.F., Hvorova A.D., Pavljukov D.M., Solpova O.A., Emel'janov A.S., Bol'shakova O.V., Vitkovskij Ju.A. Lymphocyte aggregation and lymphocytic- platelet clustering. In the collection: Proceedings of the XXIII Congress of the Physiological Society. I.P. Pavlova with international participation. 2017. 2181-2183. in Russian.

27. Hamzeh-Cognasse H., Berthelot P., Tardy B. Pozzetto B., Bourlet T., Laradi S., Garraud O., Cognasse F. Platelet toll-like receptors are crucial sensors of infectious danger moieties. Platelets. 2018. 6. 533–40. doi:10.1080/095337104.2018.1445842.

28. Sreeramkumar V., Adrover J.M., Ballesteros I., Cuartero M.I., Rossaint J., Bilbao I., Nácher M., Pitaval C., Radovanovic I., Fukui Y., Ever R. P. Mc., Filippi M.-D., Lizasoain I., Ruiz-Cabello J., Zarbock A., Moro M. A., Hidalgo A. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014. 6214. 1234–8. doi: 10.1126/science.1256478.

29. Campbell R.A., Boilard E., Rondina M.T. Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? Thromb Haemost. 2021. 1. 46–50. doi:10.1111/jth.15156.

30. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T S., Herrler G., Wu N.-H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. 2. 271–80. doi:10.1016/j.cell.2020.02.052.

31. Deutsch V.R., Tomer A. Megakaryocyte development and platelet production. Haematol. 2006. 453–466.

32. Goshua G., Pine A. B., Meizlish M.L., Chang C.-H., Zhang H., Bahel P., Baluha A., Bar N., Bona R. D., Burns A.J., Dela Cruz C.S., Dumont A., Halene S., Hwa J., Koff J., Menninger H., Neparidze N., Price C., Siner J.M., Tormey C., Rinder H.M., Chun H.-J., Lee A.-I. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross- sectional study. Lancet Haematol.2020. 7. 575–582.

33. Pine A.B., Meizlish M.L., Goshua G., Chang C.-H., Zhang H., Bishai J., Bahel P., Patel A., Gbyli R., Kwan J.-M., Won C.-H., Price C., Dela Cruz C. S., Halene S., van Dijk D., Hwa J., Lee A.-I., Chun H.-J. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ. 2020. 10.

34. Tong M., Jiang Y., Xia D., Xiong Y., Zheng Q., Chen F., Zou L., Xiao W., Zhu Y. Elevated expression of serum endothelial cell adhesion molecules in COVID-19 patients. Infect. Dis. 2020. 222. 894–898.

35. Escher R., Breakey N., Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 2020. 190. 62.

36. Henry B.M., de Oliveira M.H.S, Benoit S., Plebani M., Lippi G. Hematologic, biochemical and immune diomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19) a meta-analysis. Chem. Lab Med. 2020. doi:10.1515/cclm-2020-0369


Review

For citations:


Burdienko T.O., Tsybikov N.N., Fefelova E.V. PLATELET FUNCTIONS. HISTORICAL DIGRESSION. Transbaikalian Medical Bulletin. 2022;(3):90-98. (In Russ.) https://doi.org/10.52485/19986173_2022_3_90

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6173 (Online)