CONTENT OF SOLUBLE P-SELECTIN, PSGL-1 AND PLATELET-LEUKOCYTE COAGGREGATES IN HEALTHY CHILDREN OF DIFFERENT AGES
https://doi.org/10.52485/19986173_2023_2_26
Abstract
Aim. The study of the content of the intercellular adhesion molecule - sP-selectin, its ligand sPSGL-1, and platelet-leukocyte coaggregates in blood plasma in healthy children of different ages.
Methods. Whole blood was studied in 111 healthy children aged 7 months to 14 years. Peripheral blood of children was taken into vacuum tubes with EDTA. Detection of platelet-leukocyte complexes was carried out in a conventional way using monoclonal antibodies (Mab) conjugated with various fluorochromes. The content of intercellular adhesion molecules, sP-selectin and sPSGL-1, was assessed by multiplex analysis on a flow cytometer. The Kruskal–Wallis test (H) was used to compare all 6 study groups on the same quantitative basis. In the presence of statistically significant differences, a pairwise comparison was carried out using the MannWhitney test (U) with the Bonferroni correction.
Results. It was found that the content of the intercellular adhesion molecule sP-selectin gradually decreased. The maximum content of sP-selectin was observed in children under one year old, and then fell by 5.8 times in children of the older age group (children aged 12 years and older). It was found that the content of sPSGL1 did not change. The fluctuation of values in different age groups ranged from 52.8 to 140.7 pg/ml. A significant correlation was found between the content of sP-selectin and the content of PNeuC (plateletneutrophil coaggregates), PLymC (platelet-lymphocyte coaggregates) in the peripheral blood of healthy children of different ages.
Conclusions. The amount of sP-selectin decreases with age, while the content of sPSGL-1 remains unchanged. At the same time, there is a significant correlation between the content of sP-selectin and PNeuC, as well as PLymC.
About the Authors
E. N. BogomyagkovaRussian Federation
39a Gorky Street, Chita, 672000
A. V. Solpov
Russian Federation
39a Gorky Street, Chita, 672000
P. P. Tereshkov
Russian Federation
39a Gorky Street, Chita, 672000
Yu. A. Vitkovsky
Russian Federation
39a Gorky Street, Chita, 672000
References
1. Harjunpää H., Llort Asens M., Guenther C., Fagerholm S.C. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol. 2019. DOI: 10.3389/fimmu.2019.01078.
2. Gilyazova G.I., Mukhoramova I.S., Rudenko Yu.A., Koroy P.V. The role of adhesion molecules in the immune response. Bulletin of a young scientist. 2012. 2. 21-27. in Russian.
3. Kappelmayer J., Nagy B.Jr. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. Hindawi BioMed Res Int. 2017. 6138145. DOI: 10.1155/2017/6138145.
4. Kubysheva N.I., Postnikova L.B., Soodaeva S.K., Novikov V.V., Shumilova S.V., Kasatova E.S., Eliseeva T.I., Ignatov S.K., Li T.V., Batyrshin I.Z. Significance of soluble cell adhesion molecules, nitric oxide metabolites, endothelin-1 and their associations as markers of inflammation progression in COPD. Modern technologies in medicine. 2017. 9(2). 105-117. in Russian.
5. Moskalets O.V. Cell adhesion molecules ICAM-1 and VCAM-1 in infectious pathology. Pacific Medical Journal. 2018. 2. 21-25. https://doi.org/10.17238/PmJ1609-1175.2018.2.21-25. in Russian.
6. Lareva N.V., Gordeeva O.O. Place of cell adhesion molecules in the pathogenesis of chronic obstructive pulmonary disease and arterial hypertension in a gender aspect. Transbaikal Medical Bulletin. 2018. 1. 87-97. DOI 10.52485/19986173_2018_1_87. – EDN YVPBTI. in Russian.
7. Zarbock A.., Müller H., Kuwano Y, Ley K. PSGL-1-dependent myeloid leukocyte activation. J Leukoc Biol. 2009. 86. 1119-24. https://doi.org/10.1189/jlb.0209117.
8. Tinoco R., Otero D.C., Takahashi A., Bradley L.M. PSGL-1: a new player in the immune checkpoint landscape. Trends Immunol. 2017. 38. 323-35. https://doi.org/10.1016/j.it.2017.02.002.
9. Abadier M., Ley K. P-selectin glycoprotein ligand-1 in T cells. Curr Opin Hematol. 2017. 24. 265-73. https://doi.org/10.1097/MOH.0000000000000331.
10. Kappelmayer J., Nagy B. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. BioMed Res Int. 2017. e6138145. https://doi.org/10.1155/2017/6138145.
11. Yip C., Ignjatovic V., Attard C., Monagle P., Linden M.D. First report of elevated monocyteplatelet aggregates in healthy children. PLoS One. 2013. 8(6). e67416. DOI: https://www.doi.org/10.1371/journal.pone.0067416.
12. Vitkovsky Yu.A., Kuznik B.I., Solpov A.V. Phenomenon of lymphocytic-platelet rosette formation. Immunology. 1999. 4. 35-37. in Russian.
13. Vitkovsky Yu.A., Kuznik B.I., Solpov A.V. Pathogenetic significance of lymphocytic-platelet adhesion. Medical Immunology 2006. 8(5-6). 745-753. in Russian.
14. Rossaint J., Margraf A., Zarbock A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front Immunol. 2018. 9. 2712. DOI: 10.3389/fimmu.2018.02712.
15. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pão C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and plateletmonocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020. 136(11). 1330-1341. DOI: 10.1182/blood.2020007252.
16. Solpov A., Shenkman B., Vitkovsky Y., Brill G., Koltakov A., Farzam N., Varon D., Bank I., SavionN. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors. Thromb Haemost. 2006. 95 (5). 815-21.
17. Kuznik B.I., Vitkovsky Yu.A., Solpov A.V. Adhesive molecules and leukocyte-platelet interactions. Bulletin of hematology. 2006. 2(2). 42-55. in Russian.
18. Shenkman B., Brill G., Solpov A., Vitkovsky Y., Kuznik B., Koltakov A., Kotev-Emeth S., Savion N., Bank I. CD4+ lymphocytes require platelets for adhesion to immobilized fibronectin in flow: role of beta(1) (CD29)-, beta(2) (CD18)-related integrin’s and non-integrin receptors. Cell Immunol. 2006. 242 (1). 52-9. DOI: https://doi.org/10.1016/j.cellimm.2006.09.005.
19. Solpova O.A., Avetisyan M.A., Tereshkov P.P., Solpov A.V., Vitkovsky Yu.A. Participation of TCRαβ- and γδ-T-lymphocytes, P-selectin in the formation of cell-platelet coaggregates. Transbaikal Medical Bulletin. 2016. (2). 71–9. in Russian.
20. Zucoloto A.Z., Jenne C.N. Platelet-Neutrophil Interplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection. Front Cardiovasc Med. 2019.6 85. DOI: 10.3389/fcvm.2019.00085.
21. Pircher J., Engelmann B., Massberg S., Schulz C. Platelet-Neutrophil Crosstalk in Atherothrombosis. Thromb Haemost. 2019. 119(8). 1274-1282. DOI: 10.1055/s-0039-1692983.
22. Pavlov O.V., Chepanov S.V., Selyutin A.V., Selkov S.A. Platelet-leukocyte interactions: immunoregulatory role and pathophysiological significance. Medical immunology. 2022; 24(5):871-888. https://doi.org/10.15789/1563-0625-PLI-2511. in Russian.
23. Khaidukov S.V., Baidun L.A., Zurochka A.V., Totolyan A.A. Standardized technology "study of the subpopulation composition of peripheral blood lymphocytes using flow cytofluorometeranalyzers" (PROJECT). Medical immunology. 2012. 14(3). 255-268. in Russian.
24. Finsterbusch M., Schrottmaier W.C., Kral-Pointner J.B., Salzmann M., Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018. 29(7). 677-685. DOI: https://www.doi.org/:10.1080/09537104.2018.1430358.
25. Bogomyagkova E.N., Solpov A.V., Tereshkov P. P., and Vitkovsky Yu.A. The content of plateletleukocyte coaggregates in peripheral blood in healthy children. Immunology. 2022. 43(6). 702713. DOI: https://doi.org/10.33029/0206-4952-2022-43-6-702-713. in Russian.
26. Bogomyagkova E.N., Solpov A.V., Vitkovsky Yu.A., Tereshkov P.P. The content of coaggregates of platelets with αβ-, γδ-T-lymphocytes and some of their minor subpopulations in the blood of healthy children. Immunology. 2022. 43(1). 78-88. DOI: 10.33029/0206-4952-202142-6-78-88.
27. Zonneveld, R., Martinelli, R., Shapiro, N.I. et al. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit Care 18. 204 (2014). https://doi.org/10.1186/cc13733.
28. Burnie J., Persaud A.T., Thaya L. et al. P-selectin glycoprotein ligand-1 (PSGL-1/CD162) is incorporated into clinical HIV-1 isolates and can mediate virus capture and subsequent transfer to permissive cells. Retrovirology. 2022. 19. 9. https://doi.org/10.1186/s12977-022-00593-5.
29. Semenov A.V., Romanov Yu.A., Loktionova S.A., Tikhomirov O.Yu., Khachikyan M.V., Vasiliev S.A., Mazurov A.V. Production of soluble P-selectin by platelets and endothelial cells. Biochemistry. 1999. 64(11). 1570 - 1582. in Russian.
30. Ponomarenko E.A., Ignatova A.A., Polokhov D.M., Khismatullina R.D., Kurilo D.S., Shcherbina A., Zharkov P.A., Maschan A.A., Novichkova G.A., Panteleev M.A. Healthy pediatric platelets are moderately hyporeactive in comparison with adults' platelets. Platelets. 2022. 33(5). 727-734. DOI: 10.1080/09537104.2021.1981848.
31. A Mikhno V., Bogomolova I. K. Study of endothelial function in healthy children. Siberian Medical Review. 2012. 1. URL: https://cyberleninka.ru/article/n/issledovanie-pokazateleyfunktsii-endoteliya-u-zdorovyh-detey (date of access: 04/23/2023). in Russian.
32. Obeid J., Nguyen T., Walker R.G., Gillis L.J., Timmons B.W. Circulating endothelial cells in children: role of fitness, activity, and adiposity. Med Sci Sports Exerc. 2014. 46(10).1974-80. DOI: 10.1249/MSS.0000000000000313.
33. Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018. 371(3). 567-576. doi: 10.1007/s00441-017-2727-4.
Review
For citations:
Bogomyagkova E.N., Solpov A.V., Tereshkov P.P., Vitkovsky Yu.A. CONTENT OF SOLUBLE P-SELECTIN, PSGL-1 AND PLATELET-LEUKOCYTE COAGGREGATES IN HEALTHY CHILDREN OF DIFFERENT AGES. Transbaikalian Medical Bulletin. 2023;(2):26-38. (In Russ.) https://doi.org/10.52485/19986173_2023_2_26