The role of immune system factors in the pathogenesis of a new coronavirus infection in children
https://doi.org/10.52485/19986173_2023_1_113
Abstract
The paper presents key biomarkers of inflammation in new coronavirus infection in children. The main mechanisms of development of coronavirus infection of severe acute respiratory syndrome-2 have not been fully studied, which is of great interest for both therapeutic and pediatric services. Despite the powerful evasion of SARS-CoV-2 from the receptors of innate immunity and the violation of interferogenesis and IFN signaling, the mechanism of production of proinflammatory cytokines and chemokines in the body is not disturbed and functions normally. At the same time, in conditions of a decrease in the antiviral protective link of innate immunity, the viral load increases, the number of inducers of the pro-inflammatory response increases, which naturally becomes hyperinflammatory. The role of a number of some pro-inflammatory (IL-1b, IL-2,TNF-α, IL-17A, IL-6, IFN-γ) and anti-inflammatory (IL-4, IL-10, IL-12p70, IL-8) cytokines, chemokines (MCP-1, MIP-1α, MIP-1β, RANTES, Eotaxin, TARC, MIP-3α, GRO-α, ENA-78, MIG, IP-10, I-TAC) in blood serum, transforming growth factor TGF-β1. The severity and outcomes of COVID-19 are closely related to the body's immune responses, often uncontrollable and uncontrolled, which underscores the urgent need for further study and understanding of the full range of immune disorders caused by the virus SARS-CoV-2.
About the Authors
I. K. BogomolovaRussian Federation
672000; 39 А Gorky str.; Chita
A. A. Babkin
Russian Federation
672000; 39 А Gorky str.; Chita
V. N. Peregoedova
Russian Federation
672000; 39 А Gorky str.; Chita
V. A. Shcherbak
Russian Federation
672000; 39 А Gorky str.; Chita
References
1. Neeland M.R., Bannister S., Clifford V. et al. Innate cell profiles during the acute and convalescent phase of SARS-CoV-2 infection in children. Nat Commun. 2021 Feb 17. 12(1). 1084. doi: 10.1038/s41467-021-21414-x.
2. Wilk A.J., Rustagi A., Zhao N.Q. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 2020. 26. 1070–1076. doi: 10.1038/s41591-020-0944-y.
3. Loske J., Röhmel J., Lukassen S. et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nat Biotechnol. 2022 Mar. 40(3). 319-324. doi: 10.1038/s41587-021-01037-9.
4. Winkley K., Banerjee D., Bradley T. et al. Immune cell residency in the nasal mucosa may partially explain respiratory disease severity across the age range. Sci Rep. 2021 Aug 5. 11(1). 15927. doi: 10.1038/s41598-021-95532-3.
5. Cusenza F., Davino G., D'Alvano T. et al. Silence of the Lambs: The immunological and molecular mechanisms of COVID-19 in children in comparison with adults. microorganisms. 2021 Feb 7. 9(2). 330. doi: 10.3390/microorganisms9020330.
6. Grifoni A., Weiskopf D., Ramirez SI. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020 Jun 25. 181(7). 1489-1501.e15. doi: 10.1016/j.cell.2020.05.015.
7. Rydyznski Moderbacher C., Ramirez S.I., Dan J.M. et al. Antigen-Specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020 Nov 12. 183(4). 996-1012.e19. doi: 10.1016/j.cell.2020.09.038.
8. Peng Y., Mentzer A.J., Liu G. et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020 Nov. 21(11). 1336-1345. doi: 10.1038/s41590-020-0782-6.
9. Sekine T., Perez-Potti A., Rivera-Ballesteros O. et al. Cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020 Oct 1. 183(1). 158-168.e14. doi: 10.1016/j.cell.2020.08.017.
10. Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020 Jun 25. 181(7). 1489-1501.e15. doi: 10.1016/j.cell.2020.05.015.
11. Nguyen-Contant P., Embong AK., Kanagaiah P. et al. S Protein-Reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the s2 subunit. mBio. 2020 Sep 25. 11(5). e01991-20. doi: 10.1128/mBio.01991-20.
12. Zhou R., To K.K., Wong Y.C. et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity. 2020 Oct 13. 53(4). 864-877.e5. doi: 10.1016/j.immuni.2020.07.026..
13. Riollano-Cruz M., Akkoyun E., Briceno-Brito E. et al. Multisystem inflammatory syndrome in children related to COVID-19: A New York City experience. J Med Virol. 2021. 93(1). 424-433. doi: 10.1002/jmv.26224.
14. Evstratova V.S., Rieger N.A., Nikityuk D.B., Khanferyan R.A. Features of chemokine secretion by mononuclear and dendritic cells: the role of histamine H3/H4-type receptors. Medical Immunology. 2016. 18. 5. 437-442. doi: 10.15789/1563-0625-2016-5-437-442. in Russian.
15. Arsentieva N.A., Lyubimova N.E., Batsunov O.K. et al. Cytokines in the blood plasma of COVID-19 patients in the acute phase of the disease and the phase of complete recovery. Medical Immunology. 2021. 23. 2. 311-326. doi: 10.15789/1563-0625-PCI-2312. in Russian.
16. Bogomolova I.K., Babkin A.A., Peregoedova V.N. Hemogram indices in new coronavirus infection in children aged 7-14 years. Russian Bulletin of Perinatology and Pediatrics. 2022. 67. 6. 54-57. doi: 10.21508/1027-4065-2022-67-6-54-57. in Russian.
17. Peregoedova V.N., Bogomolova I.K., Babkin A.A., Tereshkov P.P. The content of some cytokines and serum chemokines in coronavirus infection in children. Questions of practical pediatrics. 2022. 17. 2. 16-22. doi: 10.20953/1817-7646-2022-2-16-22. in Russian.
18. Bogomolova I.K., Peregoedova V.N., Babkin A.A., Puzyrev Z.N. Prognostic predictors of the severity of coronavirus infection in preschool children. Pediatrics. The journal named after G.N. Speransky. 2022. 101. 6. 65-73. doi: 10.24110/0031-403X-2022-101-6-65-73. in Russian.
19. Mammadova L.V., Kostenko E.O., Girina A.A., Petrovsky F.I. Multisystem inflammatory syndrome in children associated with a new coronavirus infection (COVID-19). Scientific medical bulletin of Ugra. 2022. 32. 2. 27-29. doi: 10.25017/2306-1367-2022-32-2-27-29. in Russian.
20. Meeker R.B. Williams K., Killebrew D.A. Hudson L.C. Cell trafficking through the choroid plexus. Cell AdhMigr. 2012 Sep-Oct. 6(5). 390-6. doi: 10.4161/cam.21054.
21. Centers for disease control and prevention : website. – URL: https://covid.cdc.gov/covid-data-tracker/#mis-national-surveillance (available from: 09. 03. 2023).
22. Zheng K.I., Feng G., Liu W.Y. et al. Extrapulmonary complications of COVID-19: A multisystem disease? J Med Virol. 2021 Jan. 93(1). 323-335. doi: 10.1002/jmv.26294.
23. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015. 1282. 1-23. doi: 10.1007/978-1-4939-2438-7_1.
24. Bryce C., Grimes Z., Pujadas E. et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. 2020. 05. 18. 20099960. doi: 10.1101/2020.05.18.20099960.
25. Townsend E.C., Zhang G.Y., Ali R. et al. The balance of type 1 and type 2 immune responses in the contexts of hepatitis B infection and hepatitis D infection. J Gastroenterol Hepatol. 2019 Apr. 34(4). 764-775. doi: 10.1111/jgh.14617.
26. Ramos-Casals M., Brito-Zerón P., López-Guillermo A., Khamashta M.A., Bosch X. Adult haemophagocytic syndrome. Lancet. 2014 Apr 26. 383(9927). 1503-1516. doi: 10.1016/S0140-6736(13)61048-X.
27. George MR. Hemophagocytic lymphohistiocytosis : review of etiologies and management. J Blood Med. 2014 Jun 12. 5. 69-86. doi: 10.2147/JBM.S46255.
28. Gustine J.N., Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. 2021 Jan. 191(1). 4-17. doi: 10.1016/j.ajpath.2020.08.009.
29. Mc Gonagle D., Sharif K., O'Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020 Jun. 19(6). 102537. doi: 10.1016/j.autrev.2020.102537.
30. Kaneko K., Akagawa S., Akagawa Y., Kimata T., Tsuji S. Our evolving understanding of Kawasaki disease pathogenesis: role of the gut microbiota. FrontImmunol. 2020 Jul. 24. 11. 1616. doi: 10.3389/fimmu.2020.01616.
31. Parnham MJ., Erakovic Haber V., Giamarellos-Bourboulis EJ. et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014 Aug. 143(2). 225-45. doi: 10.1016/j.pharmthera.2014.03.003.
32. Vallurupalli M., Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocyticlymphohistiocytosis. Blood. 2019 Nov 21. 134(21). 1783-1786. doi: 10.1182/blood.2019002289.
33. Zanone S.M., Krause L.K., Madhi S.A. et al. RSV and child mortality working group. Challenges in estimating RSV-associated mortality rates. Lancet Respir Med. 2016 May. 4(5). 345-7. doi: 10.1016/S2213-2600(16)30042-X.
34. Chinn I.K., Blackburn C.C., Manley N.R., Sempowski G.D. Changes in primary lymphoid organs with aging. Semin Immunol. 2012 Oct. 24(5). 309-20. doi: 10.1016/j.smim.2012.04.005.
35. Arentz M., Yim E., Klaff L. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Apr 28. 323(16). 1612-1614. doi: 10.1001/jama.2020.4326.
36. Pan P., Du X., Zhou Q. et al. Characteristics of lymphocyte subsets and cytokine profiles of patients with COVID-19. Virol J. 2022 Mar 28. 19(1). 57. doi: 10.1186/s12985-022-01786-2.
37. Wang F., Nie J., Wang H. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020 May 11. 221(11). 1762-1769. doi: 10.1093/infdis/jiaa150.
38. Gustine J., Jones D. Immunopathology of hyperinflammation in COVID-19. Am J Pathol. 2021 Jan. 191(1). 4-17. doi: 10.1016/j.ajpath.2020.08.009.
39. Aleksandrovich Ju.S., Prometnoj D.V., Mironov P.I. et al. Predictor fluconazole fatal ischemic Novo coronavirus infections COVID-19 in children. Vestnik anesteziologii i reanimatologii. 2021. 18. 4. 29-36. doi: 10.21292/2078-5658-2021-18-4-29-36. in Russian.
40. Kovtun O.P., Oleinikova O.M., Beikin Ya.B. Immune response in new coronavirus infection COVID-19 in children and adults. Ural Medical Journal. 2021. 20. 4. 12-17. doi: 10.52420/2071-5943-2021-20-4-12-17. in Russian.
Review
For citations:
Bogomolova I.K., Babkin A.A., Peregoedova V.N., Shcherbak V.A. The role of immune system factors in the pathogenesis of a new coronavirus infection in children. Transbaikalian Medical Bulletin. 2023;(1):113-121. (In Russ.) https://doi.org/10.52485/19986173_2023_1_113