Morphological and immunological changes in tissues during experimental parodontitis in rats
https://doi.org/10.52485/19986173_2023_1_74
Abstract
The purpose of the study: to evaluate the morphological and immunohistochemical parameters of the rat periodontium in the model of experimental periodontitis.
Materials and methods. Experimental periodontitis was formed in male Wistar rats aged 18–20 weeks and weighing 200–300 g. Periodontitis was modeled by detaching the gums with the end of a spear-shaped scalpel (No. 11) in combination with injections of 10 % ethanol solution with 0.25 % novocaine solution in within 7 days. The inflammatory process was assessed morphologically and histologically. In blood serum and homogenate of periodontal tissues, the level of cytokines was determined using a multiplex analysis system (USA). Histological sections were made at the level of the incisors of both jaws, stained with hematoxylin-eosin and immunohistochemically with rabbit monoclonal antibodies (SP7). Statistical data processing was carried out using one-way Kruskal-Walliss analysis of variance. Significance of differences between groups (p) was assessed using pairwise comparisons of Dwass-Steele-Critchlow-Fligner.
Research results. On the seventh day of the experiment, the gum acquired a cyanotic hue, its significant edema was observed. Histologically, the presence of a periodontal pocket, infiltration of tissues with leukocytes, macrophages, fibroblasts, thickening of the gingival epithelium, destruction of the periodontium and resorption of the bone beams of the alveoli were recorded. There was an increase in the concentrations of cytokines in rats, to a greater extent in the blood serum. The most pronounced increase was in TNFα and IFN γ, the minimum increase was observed in IL 6. It was found that the number of macrophages and B-lymphocytes increased equally by 8.5 times (p = 0.000001), the number of T-lymphocytes increased by 5.5 times (p = 0.000001).
Conclusion. In the model of chronic periodontitis, we have shown that there is activation of all parts of the immune system, with a predominance of the humoral part of the immune system, manifested by an increase in the levels of cytokines both in blood serum and tissues and an increase in the number of immunocompetent cells in periodontal tissues.
About the Authors
A. A. FefelovRussian Federation
672027; 8 Ugdanskaya str.; Chita
Ts. B. Bayaskhalanova
Russian Federation
672000; 39 А Gorky str.; Chita
P. P. Tereshkov
Russian Federation
672000; 39 А Gorky str.; Chita
E. V. Fefelova
Russian Federation
672000; 39 А Gorky str.; Chita
N. N. Tsybikov
Russian Federation
672000; 39 А Gorky str.; Chita
References
1. Richards D. Review finds that severe periodontitis affects 11 % of the world population. Evid Based Dent. 2014. 15(3). 70-1. doi: 10.1038/sj.ebd.6401037.
2. Tabassum A., Madi M., Alabdulaziz A., Al Nasrallah Y., Alabdulaziz M., Ahmad Siddique I., Kazmi F. Prevalence of periodontitis based on retrospective radiographic evaluation at dental hospital in Eastern Province of Saudi Arabia: A retrospective study. Saudi Dent J. 2022. 34(8). 788-794. doi: 10.1016/j.sdentj.2022.11.006.
3. Al-Nasser L., Lamster I.B. Prevention and management of periodontal diseases and dental caries in the older adults. Periodontol 2000. 2020. 84(1). 69-83. doi: 10.1111/prd.12338.
4. Colombo A.P., Bennet S., Cotton S.L., Goodson J.M., Kent R., Haffajee A.D., Socransky S.S., Hasturk H., Van Dyke T.E., Dewhirst F.E., Paster B.J. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol. 2012. 83(10). 1279-87. doi: 10.1902/jop.2012.110566.
5. Dahlen G., Basic A., Bylund J. Importance of Virulence Factors for the Persistence of Oral Bacteria in the Inflamed Gingival Crevice and in the Pathogenesis of Periodontal Disease. J Clin Med. 2019. 8(9). 1339. doi: 10.3390/jcm8091339.
6. Bertolini M., Costa R.C., Barão V.A.R., Cunha Villar C., Retamal-Valdes B., Feres M., Silva Souza J.G. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms. 2022. 10(12). 2413. doi: 10.3390/microorganisms10122413.
7. Pan W., Wang Q., Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019. 11(3). 30. doi: 10.1038/s41368-019-0064-z.
8. Clark D., Radaic A., Kapila Y. Cellular Mechanisms of Inflammaging and Periodontal Disease. Front Dent Med. 2022. 3. 844865. doi: 10.3389/fdmed.2022.844865.
9. Khoury W., Glogauer J., Tenenbaum H.C., Glogauer M. Oral inflammatory load: Neutrophils as oral health biomarkers. J Periodontal Res. 2020. 55(5). 594-601. doi: 10.1111/jre.12758.
10. Shahsavari M., Azizi Mazreah S., Arbabi Kalati P. Expression of mast cell in aggressive periodontitis. Minerva Stomatologica. 2020. 69(3). 127-132. DOI: 10.23736/s0026-4970.20.04269-7.
11. Yin L., Li X., Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. Jpn Dent Sci Rev. 2022. 58. 336-347. doi: 10.1016/j.jdsr.2022.10.002.
12. Han Y.K., Jin Y., Miao Y.B., Shi T., Lin X.P. CD8+ Foxp3+ T Cells Affect Alveolar Bone Homeostasis via Modulating Tregs/Th17 During Induced Periodontitis: an Adoptive Transfer Experiment. Inflammation. 2018. 41(5). 1791-1803. doi: 10.1007/s10753-018-0822-7.
13. Bártová J., Krátká-Opatrná Z., Procházková J., Krejsa O., Dusková J., Mrklas L., Tlaskalová H., Cukrowská B. Th1 and Th2 cytokine profile in patients with early onset periodontitis and their healthy siblings. Mediators Inflamm. 2000. 9(2). 115-20. doi: 10.1080/096293500411587.
14. Song L., Tan J., Wang Z., Ding P., Tang Q., Xia M., Wei Y., Chen L. Interleukin‑17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep. 2019. 19(6). 4743-4752. doi: 10.3892/mmr.2019.10155.
15. Cavalla F., Hernández M. Polarization Profiles of T Lymphocytes and Macrophages Responses in Periodontitis. Adv Exp Med Biol. 2022. 1373. 195-208. doi: 10.1007/978-3-030-96881-6_10.
16. Krivosheeva E.M., Fefelova E.V., Borodulina I.I., Sepp A.V., Borodulina N.V. Adaptogens' efficiency in experimental periodontitis with hyperhomocisteinemia. Bulletin of the East Siberian Scientific Center of the Siberian Branch of the Russian Academy of medical sciences. 2010. 3(73). 221-225. in Russian.
17. Bancroft J.D.; Gamble M. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; Immunohistochemical techniques; pp. 433–472.
18. Pinelis I.S., Pinelis Yu.I., Malezhik M.S., Usnitsky I.D. Indicators of innate and adaptive immunity in chronic generalized periodontitis in elderly and senile patients. Yakut Medical Journal. 2020. 1 (69). 63-67. doi: 10.25789/YMJ.2020.69.15. in Russian.
19. Chen M.L., Sundrud M.S. Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016. 22(5). 1157-67. doi: 10.1097/MIB.0000000000000714.
20. Jagannathan M., Hasturk H., Liang Y., Shin H., Hetzel J.T., Kantarci A., Rubin D., McDonnell M.E., Van Dyke T.E., Ganley-Leal L.M., Nikolajczyk B.S. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol. 2009. 183(11). 7461-70. doi: 10.4049/jimmunol.0901517.
Review
For citations:
Fefelov A.A., Bayaskhalanova Ts.B., Tereshkov P.P., Fefelova E.V., Tsybikov N.N. Morphological and immunological changes in tissues during experimental parodontitis in rats. Transbaikalian Medical Bulletin. 2023;(1):74-81. (In Russ.) https://doi.org/10.52485/19986173_2023_1_74