doi: 10.52485/19986173_2022_4_42 УДК: 575.174.015.3: 616-092.11

Емельянов А.С., Чупрова Г.А., Емельянова А.Н., Витковский Ю.А.

ПОЛИМОРФИЗМ ПРОМОТОРА ГЕНА *IL-4 (C589T)* И ЕГО ВЛИЯНИЕ НА ПОКАЗАТЕЛЬ ЛИМФОЦИТАРНО-ТРОМБОЦИТАРНОЙ АДГЕЗИИ И СОДЕРЖАНИЕ ИНТЕРЛЕЙКИНА 4 В КРОВИ ПАЦИЕНТОВ ПРИ ГРИППЕ A(H3N2)

Федеральное государственное бюджетное образовательное учреждение высшего образования «Читинская государственная медицинская академия» Министерства здравоохранения Российской Федерации, 672000, г. Чита, ул. Горького, 39а

Цель исследования: изучение частоты полиморфных аллелей и генотипов промотора гена IL-4 (C589T) rs2243250, а также их влияния на показатель лимфоцитарно-тромбоцитарной адгезии и содержание интерлейкина 4 в крови пациентов при гриппе A(H3N2).

Материалы и методы. В исследование методом сплошной выборки были включены больные гриппом A(H3N2) (89 человек). Контрольную группу составили 96 практически здоровых доноров. Определение SNP генов осуществлялось методом ПЦР с использованием стандартных наборов НПФ «Литех» (Москва). С помощью световой микроскопии определяли показатель лимфоцитарно-тромбоцитарной адгезии (ЛТА) по методу Ю.А. Витковского и др. (1999). Измерение уровня цитокина проводили методом твердофазного ИФА с использованием набора реагентов ООО «Вектор-Бест» (Новосибирск).

Результаты. Установлено, что шанс развития гриппа A(H3N2) возрастает у лиц-носителей аллели T (OR=2,37 [CI95%: 1,50-3,74]) (p=0,0002), гетерозиготного варианта C/T (OR=1,88 [CI95%: 1,03-3,42]) и гомозиготного генотипа T/T (OR=3,04 [CI95%: 1,12-8,23]) промотора гена IL-4 (C589T) (p=0,001). Среди больных гриппом A(H3N2) у обладателей гомозигот C/C определялась минимальная концентрация IL-4, а максимальная — у носителей вариантов T/T. Наивысшая способность к лимфоцитарно-тромбоцитарному розеткообразованию при гриппе A(H3N2) выявляется у лицносителей генотипа C/C промотора гена IL-4 (C589T).

Выводы. Содержание IL-4 и показатели функции лимфоцитарно-тромбоцитарной адгезии при гриппе A(H3N2) зависят от носительства генотипов промоторного региона C589T гена IL-4.

Ключевые слова: грипп, полиморфизм генов интерлейкина 4 (C589T), IL-4, лимфоцитарнотромбоцитарная адгезия.

Emelyanov A.S., Chuprova G.A., Emelyanova A.N., Vitkovsky Yu.A.

INTERLEUKIN-4 GENE PROMOTER POLYMORPHISM (C589T) AND ITS INFLUENCE ON LYMPHOCYTE PLATELET ADHESION AND INTERLEUKIN 4 CONCENTRATION IN BLOOD OF PATIENTS WITH INFLUENZA A(H3N2)

Chita State Medical Academy, 39a, Gorky street, Chita, Russia, 672000

Aim was to study of the lymphocyte-platelet adhesion function and interleukin 4 concentration in blood of patients with influenza A(H3N2) depending on polymorphic variants of the IL-4 gene promoter (C589T).

Methods. The study was performed in 89 patients with influenza A(H3N2) and 96 healthy residents.

Results. It was found that the chance of developing influenza A(H3N2) increases in persons carrying the allele $T(OR=2,37\ [CI95\%:\ 1,50-3,74])$ (p=0,0002), heterozygous C/T variant ($OR=1,88\ [CI95\%:\ 1,03-3,42]$) and homozygous T/T genotype ($OR=3,04\ [CI95\%:\ 1,12-8,23]$) of the IL-4 gene promoter (C589T) (p=0,001). Among influenza A(H3N2) patients, the C/C homozygous carriers had the lowest concentration of IL-4, while the highest concentration was found in the carriers of the T/T variants. Carriers of the C/C genotype of the IL-4 gene promoter (C589T) have the highest ability for lymphocytic-platelet adhesion in influenza A(H3N2).

Conclusion. Indicators of the function of lymphocyte-platelet adhesion and interleukin 4 concentration in blood of patients with influenza A(H3N2) depend on the carriage of genotypes of the IL-4 gene promoter polymorphism (C589T).

Key words: influenza, gene polymorphism of interleukin 4 (C589T), IL-4, lymphocyte-platelet adhesion.

Инфекция, вызванная вирусом гриппа A(H3N2), стала на сегодняшний день основной причиной сезонных заболеваний гриппом и смерти за последние 50 лет, при этом число

госпитализаций от вируса A(H3N2) более чем в два раза превышает число госпитализаций от гриппа A(H1N1) за последние шесть эпидемических сезонов [1-4].

По мнению ученых, фактором, способствующим более широкому распространению гриппа A(H3N2), являются его более частые, по сравнению с гриппом A(H1N1), антигенные мутации [5].

Ключевым этапом при инфекциях, вызванных оболочечными вирусами, в том числе и при гриппе, является слияние оболочки вируса с мембраной клетки, что позволяет патогену внедрять свой генетический материал в клетки хозяина и размножаться [6].

Развивающееся воспаление сопровождается активацией клеток-эффекторов естественного иммунитета, в т.ч. противовоспалительных цитокинов, которые ограничивают распространение очага воспаления и отвечают за поддержание гомеостаза при воспалительной реакции [7].

Интерлейкин-4 (IL-4) — это противовоспалительный цитокин, который стимулирует пролиферацию активированных Т- и В-клеток, регулирует дифференцировку В-клеток, способствует развитию Т-хелперов 2-го типа (Th2) и ингибирует дифференцировку Т-хелперных клеток 1-го типа (Th1) [8, 9], образующих агрегаты с тромбоцитами (лимфоцитарно-тромбоцитарные агрегаты, или ЛТА) [7, 9]. Лимфоцитарно-тромбоцитарное розеткообразование, являясь интегральным показателем, отображает изменения в системах гемостаза и иммунитета, а также позволяет прогнозировать течение патологического процесса [7, 9].

Известно, что противовоспалительные интерлейкины, в том числе интерлейкин-4, существенно ингибируют лимфоцитарно-тромбоцитарную адгезию [10].

Наличие нуклеотидной замены (SNP) в промоторной области C589T rs2243250 влечет за собой изменение структуры гена IL-4 и, как следствие, активности кодируемого белка IL-4, что, в свою очередь, оказывает влияние на способность к лимфоцитарно-тромбоцитарному взаимодействию, и может сказаться на продолжительности и интенсивности воспалительного ответа [7].

Целью исследования явилось изучение частоты полиморфных аллелей и генотипов промотора гена IL-4 (C589T) rs2243250, а также их влияния на показатель лимфоцитарнотромбоцитарной адгезии и содержание интерлейкина 4 в крови пациентов при гриппе A(H3N2).

Материалы и методы. В исследование методом сплошной выборки были включены больные гриппом А(Н3N2) (89 человек) эпидемических сезонов 2016-2017 гг. и 2017-2018 гг. Медиана возраста составляла 52,5 [36,5; 71,0] лет. Когорты мужчин и женщин сопоставимы по возрасту (56,0 [33,5; 74,0] и 53,0 [39,0; 70,0] лет, соответственно, р>0,05). Соотношение мужчин и женщин в группе пациентов составило 38:51 (1:1,3). Диагноз гриппа A(H3N2) устанавливался на основании эпидемиологического анамнеза, комплекса характерных клинических симптомов и в 100% случаев был подтвержден путем обнаружения РНК вируса в назофарингеальных мазках методом полимеразной цепной реакции (ПЦР). Критерии включения: давность заболевания не более 5 суток, наличие одного или нескольких симптомов интоксикации (слабости, озноба, головной боли, ломоты в теле, тошноты, рвоты), наличие одного или нескольких симптомов катарального воспаления дыхательных путей (кашля, боли в горле, насморка), повышение to тела, лабораторное подтверждение гриппа. Критерии не отказ пациента от участия в исследовании, отсутствие включения: гриппоподобного заболевания, детский возраст, отсутствие лабораторного подтверждения гриппа, наличие любых иных инфекционных заболеваний, обострение хронических воспалительных процессов, аутоиммунной патологии, тяжелой сопутствующей патологии, аллергических реакций, сахарного диабета и других эндокринных наследственные и психические болезни, у женщин – беременность и ранний послеродовый период.

Контрольная группа сформирована в те же эпидемические сезоны и включала 96 практически здоровых доноров с аналогичными исследуемой группе характеристиками по

полу и возрасту, у которых при клиническом, лабораторном и инструментальном обследовании не выявлено патологических отклонений от принятых в регионе нормативов. Медиана возраста – 49,0 [34,5; 74,0] лет, когорты мужчин и женщин сопоставимы по возрасту (51,0 [31,0; 72,5] и 54,0 [34,0; 75,0] лет, соответственно, р>0,05), соотношение мужчин и женщин в контрольной группе составило 42:54 (1:1,3). Помимо перечисленных критериев не включения в исследование добровольцы контрольной группы не должны были иметь клинических проявлений гриппа или ОРВИ, либо в анамнезе отрицать признаки перенесенного гриппа или ОРВИ в данном эпидемическом сезоне.

Для переноса данных с исследуемой выборочной совокупности на генеральную, которой являются представители европеоидной расы, родившиеся и проживающие на территории Забайкальского края (930017 человек по данным Федеральной службы государственной статистики), при уровне надежности 80% и доверительной погрешности 5% минимальный размер необходимой выборки составляет 164 человека (в исследование включено 185 человек). В работе с обследуемыми лицами соблюдались этические принципы, предъявляемые Хельсинкской декларацией Всемирной медицинской ассоциации (World Medical Association Declaration of Helsinki) (1964, 2013 − поправки) и Правилами клинической практики в Российской Федерации, утвержденными Приказом Минздрава РФ от 19.06.2003 г., № 266.

Определение SNP-генов осуществлялось методом ПЦР с использованием стандартных наборов НПФ «Литех» (Москва). Амплификацию фрагментов гена *IL-4* (*C589T*) проводили в термоциклере (модель «Бис»-М111, ООО «Бис-Н», Новосибирск). Детекцию продукта амплификации проводили в 3% агарозном геле. Определение показателя лимфоцитарнотромбоцитарной адгезии (ЛТА), относящегося к функциональным тестам оценки иммунокомпетентных клеток, проводили по методу, предложенному Ю.А. Витковским и др. (1999). Измерение уровня цитокина проводили методом твердофазного ИФА с использованием набора реагентов ООО «Вектор-Бест» (г. Новосибирск).

Статистическая обработка осуществлялась при помощи электронных программ Microsoft Excel 2007, STATISTICA 10.0 с определением статистической значимости различий при р<0,05. При нормальном распределении признака использовали параметрические методы статистики. Результаты представлены как медиана (Ме) с интерквартильным интервалом (25 и 75 перцентили). Для сравнения частот аллелей и генотипов по качественному бинарному признаку применяли критерий χ^2 . Для оценки ассоциаций полиморфных вариантов генов с патологическим фенотипом рассчитывали показатель отношения шансов (OR) с расчетом для него 95% доверительного интервала (CI).

Результаты и обсуждение. В результате проведенного генетического анализа среди больных гриппом и здоровых резидентов обнаружено, что распределение частот аллелей и генотипов исследуемого полиморфизма IL-4 (C589T) соответствует эквилибриуму Харди-Вайнберга (p>0,05) (табл. 1).

Соответственно этому распределение генотипов среди пациентов с гриппом A(H3N2) также значительно отличалось от здоровых лиц. Установлено, что у больных превалировали гетерозиготные варианты C/T – в 46,1% случаев (χ^2 =13,15; p<0,05), тогда как распределение генотипов среди здоровых резидентов оказалось следующим: C/C – 62,5%, C/T – 31,3%, T/T – 6,2% (χ^2 =13,15; p<0,05) (табл. 1).

В группе больных превалировала аллель C с частотой 0,601, а аллель T выявлялась с частотой 0,399, что в 1,8 раза чаще, чем в контрольной группе ($\chi^2=14,13$; p<0,001) (табл. 1).

Таблица 1

Встречаемость SNP *IL-4 (С589Т)* у здоровых лиц и больных гриппом A(H3N2)

Группа	Аллель	Частота аллели, Р	χ²; p	Генотип	Частота генотипа, %	χ²; p
Больные гриппом A(H3N2) (n=89)	C T	0,601 0,399	14,13	C/C C/T T/T	37,1 46,1 16,8	13,15
Контрольная группа (n=96)	C T	0,781 0,219	p=0,0002	C/C C/T T/T	62,5 31,3 6,2	p=0,001

Исходя из полученных данных о распределении частот, шанс развития гриппа A(H3N2) возрастает у лиц-носителей аллели T (OR=2,37 [CI95%: 1,50-3,74]) (p=0,0002), гетерозиготного варианта C/T (OR=1,88 [CI95%: 1,03-3,42]) и гомозиготного генотипа T/T (OR=3,04 [CI95%: 1,12-8,23]) промотора гена IL-4 (C589T) (p=0,001) (табл. 1). Вероятность развития заболевания снижена у обладателей аллели C (OR=0,42 [0,27-0,67]) и гомозиготного варианта C/C (OR=0,35 [0,19-0,64]) (табл. 1).

Учитывая, что исследуемый SNP расположен в промоторном регионе, мы проследили функцию ЛТА и концентрацию IL-4 у больных гриппом A(H3N2) в зависимости от полиморфных вариантов участка C589T гена IL-4 (табл. 2, 3).

В контрольной группе у здоровых людей-носителей различных SNP гена *IL-4* (*C589T*) концентрация одноименного цитокина не отличается. При этом среди больных гриппом A(H3N2) в условиях стимуляции иммунокомпетентных клеток у обладателей гомозигот *C/C* определялась минимальная концентрация IL-4 – 7,9 пкг/мл [7,3; 8,5] (p_1 <0,001) (табл. 2), и максимальная способность лимфоцитов контактировать с тромбоцитами – 0,82 х 10^9 /л [0,69; 1,15], тогда как у здоровых – 0,29 х 10^9 /л [0,22; 0,39] (p_1 <0,001) (табл. 3).

Таблица 2 Содержание IL-4 в крови больных гриппом A(H3N2) в зависимости от генотипа полиморфизма промотора гена *IL-4 (C589T)*, пкг/мл (Me, $O_{0.25}$ - $O_{0.75}$)

Генотип	Здоровые лица	Больные гриппом	р
C/C	0,3 [0,1; 0,6]	7,9 [7,3; 8,5]	p ₁ <0,001
C/T	0,5 [0,2; 0,9]	8,9 [8,4; 9,3]	$p_1 < 0.001$ $p_2 > 0.05$
T/T	0,8 [0,5; 1,1]	9,5 [8,8; 10,1]	p ₁ <0,001 p ₂ >0,05 p ₃ >0,05

Примечание: p_1 – статистическая значимость различий с контролем; p_2 – статистическая значимость различий по сравнению с гомозиготами C/C; p_3 – статистическая значимость различий по сравнению с гетерозиготами C/T.

Проследив изменение контактных взаимодействий лимфоцитов и тромбоцитов в динамике на 5-6 сутки от момента госпитализации и проводимого лечения, мы отметили нормализацию показателей ЛТА вне зависимости от носительства генотипов гена IL-4 (C159T) (относительного — до 17,1% [14,0; 19,3], абсолютного — до 0,36 х 10^9 /л [0,27; 0,41]), что достоверно не отличается от значений здоровых (относительный — до 14,9% [14,1; 16,3], абсолютный — до 0,26 х 10^9 /л [0,18; 0,32]) (p>0,05).

Таким образом, наивысшая способность к лимфоцитарно-тромбоцитарному розеткообразованию при гриппе A(H3N2) выявляется у лиц-носителей генотипа C/C промотора гена IL-4 (C589T).

Как могут объяснить сведения о полиморфизме промоторного региона гена IL-4 (C589T) и его влиянии на лимфоцитарно-тромбоцитарную адгезию и содержание интерлейкина 4 на индивидуальную иммунологическую реакцию организма при гриппе A(H3N2)?

Таблица 3. Лимфоцитарно-тромбоцитарная адгезия у больных гриппом A(H3N2) в зависимости от генотипа полиморфизма промотора гена *IL-4 (C589T)* (Me, O_{0.25}-O_{0.75})

	Абсолютное	Лимфоцитарно-тромбоцитарная адгезия			
Наблюдаемые	содержание	Показат			
группы	лимфоцитов, *10 ⁹ /л	Относит.,%	Абсол., *10 ⁹ /л	Степень ЛТА	
		Генотип С/С			
Контрольная	1,89	14,8	0,29	3,5	
группа (n=60)	[1,72; 2,38]	[14,1; 15,4]	[0,22;0,39]	[2,4;3,9]	
Больные гриппом (n=33)	2,9	27,4	0,82	4,3	
	[2,71; 3,67]	[23,8; 31,7]	[0,69;1,15]	[3,3; 4,8]	
	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.05$	
		Γ енотип C/T			
Контрольная	1,74	14,2	0,26	3,3	
группа (n=30)	[1,69; 2,09]	[12,5; 14,9]	[0,18; 0,29]	[2,3; 3,7]	
	3,5	22,5	0,72	3,7	
Больные	[2,94; 3,82]	[18,3; 25,3]	[0,61; 0,89]	[3,2; 4,2]	
гриппом (n=41)	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.05$	
	p ₂ >0,05	$p_2 > 0.05$	$p_2 < 0.05$	p ₂ >0,05	
		Γ енотип T/T			
Контрольная	1,61	14,1	0,22	3,1	
группа (n=6)	[1,59; 1,98]	[11,9; 14,7]	[0,16; 0,27]	[2,1; 3,4]	
Больные гриппом (n=15)	3,3	18,6	0,64	3,4	
	[2,83; 3,59]	[16,2; 25,4]	[0,47; 0,73]	[2,7; 3,9]	
	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.001$	$p_1 < 0.05$	
	$p_2 > 0.05$	$p_2 > 0.05$	$p_2 > 0.05$	$p_2 > 0.05$	
	$p_3 > 0.05$	$p_3 > 0.05$	$p_3 > 0.05$	$p_3 > 0.05$	

Примечание: p_1 – статистическая значимость различий с контролем; p_2 – статистическая значимость различий по сравнению с гомозиготными вариантами C/C; p_3 – статистическая значимость различий по сравнению с гетерозиготными вариантами C/T.

Так, коллективом авторов описано, что полиморфизм rs2070874 IL-4 может быть связан с тяжестью течения заболеваний, вызванных респираторными вирусами [11]. Peng Y. et al. в своей работе продемонстрировали, что IL-4 снижает восприимчивость к инфицированию Streptococcus pneumoniae в периоде реконвалесценции у больных гриппом [12]. В другом исследовании выявлено, что полиморфные варианты гена IL-4 rs2243250 в египетской популяции ассоциированы с острой инфекцией нижних дыхательных [13].

При этом аллельные варианты генов могут определять не только генетическую предрасположенность/устойчивость к заболеванию, но и детерминированность дисбаланса продукции цитокинов [7].

Так, в момент столкновения макрофага с вирусом инициируется секреция провоспалительных цитокинов, которые, в свою очередь, активируют Т-хелперы 1-го клона, лимфоциты, несущие маркеры CD4+, среди которых находятся Т-хелперы 2-го клона. Эти события усиливают способность Т-лимфоцитов вступать в контакт с тромбоцитами на поверхности поврежденного эндотелия. Интерлейкин-4, напротив, ингибирует деятельность Т-хелперных клеток 1-го типа (Th1), являющихся продуцентами провоспалительных цитокинов, следовательно, увеличение в крови IL-4 будет сопровождаться уменьшением ЛТА, что, в свою очередь, приведет к прекращению миграции клеток, осуществляющих иммунный ответ [7, 9, 10, 14].

Ранее в наших работах полученные результаты такого изменения параметров лимфоцитарно-тромбоцитарного взаимодействия были объяснены уровнем цитокинов у обладателей различных SNP. У пациентов-носителей полиморфных вариантов, усиливающих продукцию IL-2, показатели ЛТА максимальные, и, напротив, когда распознающие антиген клетки выделяют больше противовоспалительных цитокинов IL-4 и IL-10 — способность лимфоцитов к розеткообразованию с кровяными пластинками снижается [7, 15]. В настоящем исследовании мы продемонстрировали подтверждение этой гипотезы: способность лимфоцитарно-тромбоцитарного розеткообразования оказалась максимальной у носителей варианта генотипа *C/C* гена *IL-4* (*C589T*) на фоне минимальной концентрации IL-4 при этих полиморфных вариантах.

Таким образом, теоретически можно предположить, что изменение структуры гена *IL-4* скажется на продукции одноименной молекулы, изменяя направление иммунного ответа: так, гиперпродукция IL-4 усилит вероятность возникновения дизрегуляции цитокинопосредованных механизмов кооперации Т-лимфоцитов, моноцитов/макрофагов и нейтрофилов со сдвигом баланса в сторону Th2-ответа организма, инициируя при этом запуск гуморального звена иммунитета; при этом гипопродукция IL-4 приведет к сдвигу баланса в сторону увеличения активности Th1-лимфоцитов с гиперпродукцией ими IFN-ү и усилением активности моноцитов/макрофагов и синтезом провоспалительных цитокинов (TNF-а, IL-1, IL-6 и др.) [6, 10, 13, 14, 16].

Выволы.

- 1. Содержание IL-4 и показатели функции лимфоцитарно-тромбоцитарной адгезии при гриппе A(H3N2) зависят от носительства генотипов промоторного региона *C589T* гена *IL-4*.
- 2. Носительство аллели T, гетерозиготного варианта C/T и гомозиготного генотипа T/T гена IL-4 (C589T) увеличивают вероятность развития гриппа A(H3N2).

Вклад авторов

Емельянов А.С. -30% (сбор коллекции образцов, работа с документацией, анализ и интерпретация данных, анализ литературы по теме исследования, написание текста статьи, научное редактирование, техническое редактирование).

Чупрова Γ .А. – 30% (разработка концепции и дизайна исследования, сбор коллекции образцов, работа с документацией, статистическая обработка, анализ и интерпретация данных).

Емельянова А.Н. – 20% (разработка концепции и дизайна исследования, научное редактирование, техническое редактирование).

Витковский Ю.А. – 20% (техническое редактирование, утверждение окончательного текста статьи).

Работа выполнена при финансовой поддержке ФГБОУ ВО Читинская государственная медицинская академия Минздрава РФ в рамках утвержденного плана НИР.

Авторы заявляют об отсутствии конфликта интересов.

Список литературы:

- 1. Jester B.J., Uyeki T.M., Jernigan D.B. Fifty Years of Influenza A(H3N2) Following the Pandemic of 1968. American Journal of Public Health. 2020. 110(5). 669-676. DOI: 10.2105/AJPH.2019.305557.
- 2. Биличенко Т.Н., Чучалин А.Г. Заболеваемость и смертность населения России от острых респираторных вирусных инфекций, пневмонии и вакцинопрофилактика. Терапевтический архив. 2018. 90(1). 22-26.
- 3. Морозова О.М., Трошина Т.И., Морозова Е.Н., Морозов А.Н. Пандемия испанки 1918 года в России. Вопросы сто лет спустя. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. 98(1). 113-124. DOI: 10.36233/0372-9311-98.
- 4. Jung H.S., Kang B.J., Ra S.W., Seo K.W., Jegal Y., Jun J.B., Jung J., Jeong J., Jeon H.J., Ahn J.S., Lee T., Ahn J.J. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with

- Respiratory Viral Infection. Tuberc. Respir. Dis. (Seoul). 2017. 80(4). 358-367. DOI: 10.4046/trd.2017.0044.
- 5. Byrd-Leotis L., Gao C., Jia N., Mehta A.Y., Trost J., Cummings S.F., Heimburg-Molinaro J., Cummings R.D., Steinhauer D.A. Antigenic Pressure on H3N2 Influenza Virus Drift Strains Imposes Constraints on Binding to Sialylated Receptors but Not Phosphorylated Glycans. J Virol. 2019. 93(22). e01178-19. DOI: 10.1128/JVI.01178-19.
- 6. Lousa D., Soares C.M. Molecular mechanisms of the influenza fusion peptide: insights from experimental and simulation studie. FEBS Open Bio. 2021. 11(12). 3253-3261. DOI: 10.1002/2211-5463.13323.
- 7. Чупрова Г.А., Емельянова А.Н., Емельянов А.С., Витковский Ю.А. Полиморфизм промотора гена интерлейкина-2 (Т330G) и показатель лимфоцитарно-тромбоцитарной адгезии при гриппе A(H3N2). Журнал инфектологии. 2022. 14(1). 125-130. DOI: 10.22625/2072-6732-2022-14-1-125-130.
- 8. Troshina E.A. The role of cytokines in the processes of adaptive integration of immune and neuroendocrine reactions of the human body. Probl Endokrinol (Mosk). 2021. 67(2). 4-9. DOI: 10.14341/probl12744.
- 9. Емельянова А.Н., Тихонова Е.П., Кузьмина Т.Ю., Емельянов А.С., Чупрова Г.А., Епифанцева Н.В., Климович К.И., Радюкин Н.О., Радюкина Е.О., Юрчук С.В., Витковский Ю.А. Оценка эффективности противовирусной терапии гриппа А(Н1N1) в эпидемические сезоны 2017-2018 и 2018-2019 гг. Экспериментальная и клиническая фармакология. 2020. 83(3). 23-27. DOI: 10.30906/0869-2092-2020-83-3-23-27.
- 10. Витковский Ю.А., Кузник Б.И., Солпов А.В. Патогенетическое значение лимфоцитарнотромбоцитарной адгезии. Медицинская иммунология. 2006. 8(5-6). 745-753.
- 11. Amat F., Louha M., Benet M., Guiddir T., Bourgoin-Heck M., Saint-Pierre P., Paluel-Marmont C., Fontaine C., Lambert N., Couderc R., Gonzalez J.R., Just J. The IL-4 rs2070874 polymorphism may be associated with the severity of recurrent viral-induced wheeze. Pediatr. Pulmonol. 2017. 52(11). 1435-1442. DOI: 10.1002/ppul.23834.
- 12. Peng Y., Wang X., Wang H., Xu W., Wu K., Go X., Yin Y., Zhang X. Interleukin-4 protects mice against lethal influenza and Streptococcus pneumoniae co-infected pneumonia. Clin. Exp. Immunol. 2021. 205(3). 379-390. DOI: 10.1111/cei.13628.
- 13. Emam A.A., Shehab M.M., Allah M.N., Elkoumi M.A., Abdelaal N.M., Mosabah A.A., Zakaria M.T., Sherif A.M., Soliman M.M., El-Kaffas R.H., Abouzeid H., Abdou M.A., Abdalmonem N., Abdelbaset H.R., Mohamed S.A., Soliman A.A., Elashkar S.S., Hegab M.S., Khalil A.M., Abdel-Aziz A., Anany H.G., Salah H.E., Abdou A.M., Elshehawy N.A., Elbasyouni H.A., Hafez S.F., Abo-Alella D.A., Fawzi M.M., Morsi S.S. Interleukin-4-590C/T gene polymorphism in Egyptian children with acute lower respiratory infection: A multicenterstudy. Pediatric Pulmonology. 2019. 54. 297-302. DOI: 10.1002/ppul.24235302.
- 14. Пузырева Л.В., Сафонов А.Д. Генетический полиморфизм цитокинов: прошлое и будущее. Инфекция и иммунитет. 2016. 6(2). 103-108. DOI: 10.15789/2220-7619-2016-2-103-108.
- 15. Клинические и патогенетические закономерности гриппа H1N1/09: под редакцией А.В. Говорина, Новосибирск: 2015. 303 с. ISBN 978-5-02-019208-9.
- 16. Бойцова Е.А., Азимуродова Г.О., Косенкова Т.В. Интерлейкин 4. Биологические функции и клиническое значение в развитии аллергии (научный обзор). Профилактическая и клиническая медицина. 2020. 2(75). 70-79.

References:

- 1. Jester B.J., Uyeki T.M., Jernigan D.B. Fifty Years of Influenza A(H3N2) Following the Pandemic of 1968. American Journal of Public Health. 2020. 110(5). 669-676. DOI: 10.2105/AJPH.2019.305557.
- 2. Bilichenko T.N., Chuchalin A.G. The morbidity and mortality of the population of Russia from acute respiratory viral infections, pneumonia and vaccine prevention. Therapeutic archive. 2018. 90(1). 22-26. in Russian. DOI: 10.26442/terarkh201890122-26.3.

- 3. Morozova O.M., Troshina T.I., Morozova E.N., Morozov A.N. The Spanish flu pandemic in 1918 in Russia. Questions a hundred years later. Journal of microbiology, epidemiology and immunobiology. 2021. 98(1). 113-124. in Russian. DOI: 10.36233/0372-9311-98.
- 4. Jung H.S., Kang B.J., Ra S.W., Seo K.W., Jegal Y., Jun J.B., Jung J., Jeong J., Jeon H.J., Ahn J.S., Lee T., Ahn J.J. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection. Tuberc. Respir. Dis. (Seoul). 2017. 80(4). 358-367. DOI: 10.4046/trd.2017.0044.
- 5. Byrd-Leotis L., Gao C., Jia N., Mehta A.Y., Trost J., Cummings S.F., Heimburg-Molinaro J., Cummings R.D., Steinhauer D.A. Antigenic Pressure on H3N2 Influenza Virus Drift Strains Imposes Constraints on Binding to Sialylated Receptors but Not Phosphorylated Glycans. J Virol. 2019. 93(22). e01178-19. DOI: 10.1128/JVI.01178-19.
- 6. Lousa D., Soares C.M. Molecular mechanisms of the influenza fusion peptide: insights from experimental and simulation studie. FEBS Open Bio. 2021. 11(12). 3253-3261. DOI: 10.1002/2211-5463.13323.
- 7. Chuprova G.A., Emelyanova A.N., Emelyanov A.S., Vitkovskii Yu.A. Interleukin-2 gene promoter polymorphism (T330G) and lymphocyte platelet adhesion in influenza A (H3N2). Journal Infectology. 2022. 14(1). 125-130. in Russian. DOI: 10.22625/2072-6732-2022-14-1-125-130.
- 8. Troshina E.A. The role of cytokines in the processes of adaptive integration of immune and neuroendocrine reactions of the human body. Probl Endokrinol (Mosk). 2021. 67(2). 4-9. DOI: 10.14341/probl12744.
- 9. Emel'yanova A.N., Tikhonova E.P., Kuzmina T.Yu., Emelyanov A.S., Chuprova G.A., Epifantseva N.V., Klimovich K.I., Radyukin N.O., Radyukin E.O., Yurchuk S.V., Vitkovskii Yu. A. Expert anti-therapy flua (H1N1) in the season 2017-2018 and 2018-2019 gg. Russian Journal of Experimental and Clinical Pharmacology. 2020. 83(3). 23-27. in Russian. DOI: 10.30906/0869-2092-2020-83-3-23-27.
- 10. Vitkovsky Yu.A., Kuznick B.I., Solpov A.V. Pathogenetic significance of lymphocyte-to-platelet adherence. Medical Immunology (Russia). 2006. 8(5-6). 745-753. in Russian. DOI: 10.15789/1563-0625-2006-5-6-745-753.
- 11. Amat F., Louha M., Benet M., Guiddir T., Bourgoin-Heck M., Saint-Pierre P., Paluel-Marmont C., Fontaine C., Lambert N., Couderc R., Gonzalez J.R., Just J. The IL-4 rs2070874 polymorphism may be associated with the severity of recurrent viral-induced wheeze. Pediatr. Pulmonol. 2017. 52(11). 1435-1442. DOI: 10.1002/ppul.23834.
- 12. Peng Y., Wang X., Wang H., Xu W., Wu K., Go X., Yin Y., Zhang X. Interleukin-4 protects mice against lethal influenza and Streptococcus pneumoniae co-infected pneumonia. Clin. Exp. Immunol. 2021. 205(3). 379-390. DOI: 10.1111/cei.13628.
- 13. Emam A.A., Shehab M.M., Allah M.N., Elkoumi M.A., Abdelaal N.M., Mosabah A.A., Zakaria M.T., Sherif A.M., Soliman M.M., El-Kaffas R.H., Abouzeid H., Abdou M.A., Abdalmonem N., Abdelbaset H.R., Mohamed S.A., Soliman A.A., Elashkar S.S., Hegab M.S., Khalil A.M., Abdel-Aziz A., Anany H.G., Salah H.E., Abdou A.M., Elshehawy N.A., Elbasyouni H.A., Hafez S.F., Abo-Alella D.A., Fawzi M.M., Morsi S.S. Interleukin-4 -590C/T gene polymorphism in Egyptian children with acute lower respiratory infection: A multicenterstudy. Pediatric Pulmonology. 2019. 54. 297-302. DOI: 10.1002/ppul.24235302.
- 14. Puzyryova L.V., Safonov A.D. Cytokines genetic polymorphism: the past and the future. Russian Journal of Infection and Immunity. 2016; 6(2): 103-108. in Russian. DOI: 10.15789/2220-7619-2016-2-103-108.
- 15. Govorin AV. clinical and pathogenetic caracteristics of influenza H1N1/09. Novosibirsk: Nauka, 2015. 303 p. in Russian. ISBN 978-5-02-019208-9.
- 16. Boytsova E.A., Azimurodova G.O., Kosenkova T.V. Interleukin 4: biological functions and clinical importance in allergies development (review). Preventive and clinical medicine. 2020; 2(75): 70-79. in Russian.